怎样做百分数解决问题的方法
3个回答
展开全部
一、抓阅读,找关键词句,培养学生的审题能力。
要解答一道应用题,首先要认真阅读题目,读懂题意,知道题目告诉了什么?要求什么?其次,抓住关键句关键词,找准单位“1”,看单位“1”的量是已知量还是未知量,如果单位“1”的量已知了,根据“求一个数的几(百)分之几是多少”,用乘法计算。如果单位“1”的量是未知的,就根据“一个数的几(百)分之几是多少,求这个数”的应用题,用除法计算或列方程解答。
二、教学生找准单位“1”的量。
单位“1”是小学数学分数、百分数应用题数量关系中的一个标准量,正确认识和理解单位“1”,是解答分数和百分数应用题的关键。找准题目中的单位“1”,其中的数量关系就一目了然,问题也就迎刃而解了。通过作题、找规律我们发现通常情况下,在有分率句子中的“是”、“比”、“占”、“相当于”等词语后面的量,即是表示单位“1”的量,“的+分率”前是单位“1”,还有比如
“一桶油,一杯水,一项工程一堆煤,的字前、比字后”等这样的顺口溜。
三、对应法,从确定对应入手找出解题方法。
多数分数和百分数应用题都有一个“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确地查找并确定“量率对应”是解题的关键。我们要引导学生学会和掌握“明确对应,找准对应分率”的解题方法,注意有单位的分数和无单位的分率的区别。有单位的数量和无单位的分率要从数量关系上对应。如:一堆煤,还剩下12千克和还剩3/4的分率是一对对应的关系,那么通过除法“12÷3/4”,就能求出单位“1”的量。
四、借助线段图,理解题目的内涵,提高学生的审题能力。
画线段图是解答百分 数应用题的一种重要思考方法,因为画线段图,可以把抽象的数量关系变得具体化、直观化,可以加速学生的抽象思维向形象思维发展,从图中能容易看出对应的一组数据(确定量率对应,找出对应分率),即一个数量对应相应的分率。因此,在教学中,为突破应用题教学的难点,可以指导学生从看懂线段图到学生能根据题意自主画线段图解题,抓住这个环节,运用图的直观性审清题意,然后顺利找到关系式解答。
要解答一道应用题,首先要认真阅读题目,读懂题意,知道题目告诉了什么?要求什么?其次,抓住关键句关键词,找准单位“1”,看单位“1”的量是已知量还是未知量,如果单位“1”的量已知了,根据“求一个数的几(百)分之几是多少”,用乘法计算。如果单位“1”的量是未知的,就根据“一个数的几(百)分之几是多少,求这个数”的应用题,用除法计算或列方程解答。
二、教学生找准单位“1”的量。
单位“1”是小学数学分数、百分数应用题数量关系中的一个标准量,正确认识和理解单位“1”,是解答分数和百分数应用题的关键。找准题目中的单位“1”,其中的数量关系就一目了然,问题也就迎刃而解了。通过作题、找规律我们发现通常情况下,在有分率句子中的“是”、“比”、“占”、“相当于”等词语后面的量,即是表示单位“1”的量,“的+分率”前是单位“1”,还有比如
“一桶油,一杯水,一项工程一堆煤,的字前、比字后”等这样的顺口溜。
三、对应法,从确定对应入手找出解题方法。
多数分数和百分数应用题都有一个“量率对应”的明显特点,对一个单位“1”来说,每个分率都对应着一个具体的数量,而每一个具体的数量,也同样对应着一个分率,因此,正确地查找并确定“量率对应”是解题的关键。我们要引导学生学会和掌握“明确对应,找准对应分率”的解题方法,注意有单位的分数和无单位的分率的区别。有单位的数量和无单位的分率要从数量关系上对应。如:一堆煤,还剩下12千克和还剩3/4的分率是一对对应的关系,那么通过除法“12÷3/4”,就能求出单位“1”的量。
四、借助线段图,理解题目的内涵,提高学生的审题能力。
画线段图是解答百分 数应用题的一种重要思考方法,因为画线段图,可以把抽象的数量关系变得具体化、直观化,可以加速学生的抽象思维向形象思维发展,从图中能容易看出对应的一组数据(确定量率对应,找出对应分率),即一个数量对应相应的分率。因此,在教学中,为突破应用题教学的难点,可以指导学生从看懂线段图到学生能根据题意自主画线段图解题,抓住这个环节,运用图的直观性审清题意,然后顺利找到关系式解答。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询