数学分式加减题
2个回答
展开全部
先看x/(xy+x+1),因为xyz=1 ,带入其中的1,可得:
x/(xy+x+1)=1/(y+1+yz)
再看z/(xz+z+1),把分子分母同时乘以y带入可得:
z/(xz+z+1)=zy/(y+1+yz)
这样三者分母相同了,可以合并了,结果为:
x/(xy+x+1) + y/(yz+y+1) + z/(xz+z+1)
=1/(y+1+yz)+y/(yz+y+1)+zy/(y+1+yz)
=1
清楚些的:
x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)
=x/(xy+x+xyz)+y/(yz+y+1)+z/(xz+z+1)
=1/(y+1+yz)+y/(yz+y+1)+z/(xz+z+1)
=(1+y)/(y+1+yz)+z/(xz+z+1)
=(1+y)/(y+1+yz)+zy/(yxz+yz+y)
=(1+y)/(y+1+yz)+zy/(1+yz+y)
=(1+y+yz)/(y+1+yz)
=1
x/(xy+x+1)=1/(y+1+yz)
再看z/(xz+z+1),把分子分母同时乘以y带入可得:
z/(xz+z+1)=zy/(y+1+yz)
这样三者分母相同了,可以合并了,结果为:
x/(xy+x+1) + y/(yz+y+1) + z/(xz+z+1)
=1/(y+1+yz)+y/(yz+y+1)+zy/(y+1+yz)
=1
清楚些的:
x/(xy+x+1)+y/(yz+y+1)+z/(xz+z+1)
=x/(xy+x+xyz)+y/(yz+y+1)+z/(xz+z+1)
=1/(y+1+yz)+y/(yz+y+1)+z/(xz+z+1)
=(1+y)/(y+1+yz)+z/(xz+z+1)
=(1+y)/(y+1+yz)+zy/(yxz+yz+y)
=(1+y)/(y+1+yz)+zy/(1+yz+y)
=(1+y+yz)/(y+1+yz)
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询