已知实数x,y满足方程x^2+y^2-4x-2y+4=0. (1)求x+y的最小值和最大值。 (2)求y/x的取值范围。

小鱼1979117
2011-03-10 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1905
采纳率:0%
帮助的人:1094万
展开全部
因为x^2+y^2-4x-2y+4=0
所以x^2+y^2-4x-2y+4+1=1
即(x-2)^2 + (y-1)^2 = 1
可令x = 2+sina, y = 1+cosa, 0<=a<2PI
(1)
x+y = 3 + sina + cosa = 3 + (根号2)*sin(PI/4 + a)
所以3-根号2<=x+y<= 3+根号2
最小值是3-根号2,最大值是3+根号2
(2)
y/x = (1+cosa) / (2+sina)
= 2cos(a/2)^2 / (2 + 2sin(a/2)cos(a/2))
= 1 / (sec(a/2)^2 + tan(a/2))
= 1 / (tan(a/2)^2 + tan(a/2) + 1)
= 1 / [(tan(a/2) + 1/2)^2 + 3/4]
因为(tan(a/2) + 1/2)^2 >= 0
所以0 < y/x <= 1 / (3/4) = 4/3

即取值范围为 0 < y/x <= 4/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式