复合函数如何求积分
如sin(1+x)复合函数如何求定积分?别闲扯别具体分析有无普遍的方法又如sin(x^2+1)之类的函数如何求积分怎么应用换元法...
如sin(1+x) 复合函数如何求定积分?
别闲扯 别具体分析 有无普遍的方法
又如sin(x^2+1)之类的函数如何求积分 怎么应用换元法 展开
别闲扯 别具体分析 有无普遍的方法
又如sin(x^2+1)之类的函数如何求积分 怎么应用换元法 展开
展开全部
首先我提供一个比较通用的思路 对比系数再凑项!比如这题,sinX的原函数是-cosX,那么sin3X原函数就必然有-cos3X,但是(-cos3X)'=3sin3X,相差一个系数3,那么∫sin3X就是-cos3X/3+C.
上面适用于简单复合可以很容易思考出来,对于复杂的复合函数积分,可以采取换元。这个思路就是把复合函数求导反过来用。求导公式是F'(g(x))=F'g'(x),那么积分可以如下套公式。还是举Y=sin3X :设g=3X,注意此时dg=3dx(这个是关键一步,换元后dx要发生变化)那么原函数∫sinxdx就成为∫sin(g)d(g)/3.
而∫sin(g)d(g)/3=-cos(g)/3+C,此时把g=3X回代到-cos(g)/3+C,就得到cos3X/3+C
所以可以看出遇见简单复合或者容易看出原函数的可以凑微分,要是比较复杂或者没把握,可以用换元的办法。但是不管用很么办法有个基本前提是对一元函数积分公式要熟悉,那样遇见复合函数可以通过换元简化处理
上面适用于简单复合可以很容易思考出来,对于复杂的复合函数积分,可以采取换元。这个思路就是把复合函数求导反过来用。求导公式是F'(g(x))=F'g'(x),那么积分可以如下套公式。还是举Y=sin3X :设g=3X,注意此时dg=3dx(这个是关键一步,换元后dx要发生变化)那么原函数∫sinxdx就成为∫sin(g)d(g)/3.
而∫sin(g)d(g)/3=-cos(g)/3+C,此时把g=3X回代到-cos(g)/3+C,就得到cos3X/3+C
所以可以看出遇见简单复合或者容易看出原函数的可以凑微分,要是比较复杂或者没把握,可以用换元的办法。但是不管用很么办法有个基本前提是对一元函数积分公式要熟悉,那样遇见复合函数可以通过换元简化处理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询