已知tana=2,则2sin^a+sinacosa
2个回答
展开全部
sin2a=2tana/[1+(tana)^2]
=2*2/(1+2^2)
=4/5
cos2a=[1-(tana)]^2/[1+(tana)^2]
=(1-2^2)/(1+2^2)
=-3/5
2(sina)^2+sinacosa
=2*[1-cos2a]/2+1/2*sin2a
=1-cos2a+1/2*sin2a
=1/2*sin2a-cos2a+1
=1/2*4/5-(-3/5)+1
=2/5+3/5+1
=1+1
=2
=2*2/(1+2^2)
=4/5
cos2a=[1-(tana)]^2/[1+(tana)^2]
=(1-2^2)/(1+2^2)
=-3/5
2(sina)^2+sinacosa
=2*[1-cos2a]/2+1/2*sin2a
=1-cos2a+1/2*sin2a
=1/2*sin2a-cos2a+1
=1/2*4/5-(-3/5)+1
=2/5+3/5+1
=1+1
=2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询