已知函数f(x)=ax*3+cx+d(a不等于0)是R上的奇函数,当x=1时f(x)取的极值-2.

(1)求函数f(x)的解析式(2)当x属于[-3,3]时,f(x)<m恒成立,求实数m的取值范围... (1)求函数f(x)的解析式
(2)当x属于[-3,3]时,f(x)<m恒成立,求实数m的取值范围
展开
dushui1
2011-03-12 · TA获得超过133个赞
知道答主
回答量:102
采纳率:0%
帮助的人:71.7万
展开全部
因为为奇函数,所以f(0)=0,则d=0,f'(x)=3ax^2+c,又因为,当x=1时f(x)取的极值-2,f'(1)=3a+c=0
f(1)=a+c=-2.得:a=1,c=-3.则f(x)=x^3-3x
f'(x)=3x^2-3=0,x=1或x=-1,所以当[-3,-1]时,f'(x)>0,所以为增函数
当[-1,1]时,f'(x)<0,所以为减函数
当[1,3]时,f'(x)>0,所以为增函数
因为f(-1)=-4,f(3)=18,所以f(x)在[-3,3]的最大值为18,.
因为f(x)<m恒成立,所以m的取值范围为m>18
wjl371116
2011-03-12 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67416

向TA提问 私信TA
展开全部
已知函数f(x)=ax³+cx+d(a不等于0)是R上的奇函数,当x=1时f(x)取的极值-2.
(1)求函数f(x)的解析式
(2)当x属于[-3,3]时,f(x)<m恒成立,求实数m的取值范围
解:(1) f(-x)=-ax³-cx+d=-(ax³+cx+d)=-f(x), 故d=0..............(1)
f′(x)=3ax²+c; x=1是极值点,故f′(1)=3a+c=0..................(2)
又f(1)=a+c+d=-2..............................................................(3)
三式联立求解,即得 a=1;c= -3,d=0
故解析式为f(x)=x³-3x.
(2).令f′(x)=3x²-3=0,得驻点x=±1.
f〃(x)=6x, f〃(1)=6>0,故x=1是极小点; f〃(-1)=-6<0,故x=-1是极大点。
-1∈[-3,3], f(-1)=-1+3=2; f(-3)=-27+9=-18, f(3)=27-9=18
故应取m>18.
【由此例可知:函数的极值不一定是函数的最值,函数的最值往往发生在区间端点上】
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式