灰色预测模型GM(1,n)模型的matlab源代码,包括预测模型的建立,以及模型的精度检验 (主要是精度的检验c,p
0.1888275150.2708435060.4692077640.0896453860.020980835-0.0305175780.0610351560.00953...
0.188827515
0.270843506
0.469207764
0.089645386
0.020980835
-0.030517578
0.061035156
0.009536743
0.049591064
-0.009536743
-0.030517578
0.040054321
-0.009536743
-0.009536743
-0.011444092
0
-0.009536743
-0.009536743
0.059127808
-0.049591064 展开
0.270843506
0.469207764
0.089645386
0.020980835
-0.030517578
0.061035156
0.009536743
0.049591064
-0.009536743
-0.030517578
0.040054321
-0.009536743
-0.009536743
-0.011444092
0
-0.009536743
-0.009536743
0.059127808
-0.049591064 展开
2个回答
展开全部
function GM1_1(X0)
%format long ;
[m,n]=size(X0);
X1=cumsum(X0); %累加
X2=[];
for i=1:n-1
X2(i,:)=X1(i)+X1(i+1);
end
B=-0.5.*X2 ;
t=ones(n-1,1);
B=[B,t] ; % 求B矩阵
YN=X0(2:end) ;
P_t=YN./X1(1:(length(X0)-1)) %对原始数据序列X0进行准光滑性检验,
%序列x0的光滑比P(t)=X0(t)/X1(t-1)
A=inv(B.'*B)*B.'*YN.' ;
a=A(1)
u=A(2)
c=u/a ;
b=X0(1)-c ;
X=[num2str(b),'exp','(',num2str(-a),'k',')',num2str(c)];
strcat('X(k+1)=',X)
%syms k;
for t=1:length(X0)
k(1,t)=t-1;
end
k
Y_k_1=b*exp(-a*k)+c;
for j=1:length(k)-1
Y(1,j)=Y_k_1(j+1)-Y_k_1(j);
end
XY=[Y_k_1(1),Y] %预测值
CA=abs(XY-X0) ; %残差数列
Theta=CA %残差检验 绝对误差序列
XD_Theta= CA ./ X0 %残差检验 相对误差序列
AV=mean(CA); % 残差数列平均值
R_k=(min(Theta)+0.5*max(Theta))./(Theta+0.5*max(Theta)) ;% P=0.5
R=sum(R_k)/length(R_k) %关联度
Temp0=(CA-AV).^2 ;
Temp1=sum(Temp0)/length(CA);
S2=sqrt(Temp1) ; %绝对误差序列的标准差
%----------
AV_0=mean(X0); % 原始序列平均值
Temp_0=(X0-AV_0).^2 ;
Temp_1=sum(Temp_0)/length(CA);
S1=sqrt(Temp_1) ; %原始序列的标准差
TempC=S2/S1*100; %方差比
C=strcat(num2str(TempC),'%') %后验差检验 %方差比
%----------
SS=0.675*S1 ;
Delta=abs(CA-AV) ;
TempN=find(Delta<=SS);
N1=length(TempN);
N2=length(CA);
TempP=N1/N2*100;
P=strcat(num2str(TempP),'%') %后验差检验 %计算小误差概率
%format long ;
[m,n]=size(X0);
X1=cumsum(X0); %累加
X2=[];
for i=1:n-1
X2(i,:)=X1(i)+X1(i+1);
end
B=-0.5.*X2 ;
t=ones(n-1,1);
B=[B,t] ; % 求B矩阵
YN=X0(2:end) ;
P_t=YN./X1(1:(length(X0)-1)) %对原始数据序列X0进行准光滑性检验,
%序列x0的光滑比P(t)=X0(t)/X1(t-1)
A=inv(B.'*B)*B.'*YN.' ;
a=A(1)
u=A(2)
c=u/a ;
b=X0(1)-c ;
X=[num2str(b),'exp','(',num2str(-a),'k',')',num2str(c)];
strcat('X(k+1)=',X)
%syms k;
for t=1:length(X0)
k(1,t)=t-1;
end
k
Y_k_1=b*exp(-a*k)+c;
for j=1:length(k)-1
Y(1,j)=Y_k_1(j+1)-Y_k_1(j);
end
XY=[Y_k_1(1),Y] %预测值
CA=abs(XY-X0) ; %残差数列
Theta=CA %残差检验 绝对误差序列
XD_Theta= CA ./ X0 %残差检验 相对误差序列
AV=mean(CA); % 残差数列平均值
R_k=(min(Theta)+0.5*max(Theta))./(Theta+0.5*max(Theta)) ;% P=0.5
R=sum(R_k)/length(R_k) %关联度
Temp0=(CA-AV).^2 ;
Temp1=sum(Temp0)/length(CA);
S2=sqrt(Temp1) ; %绝对误差序列的标准差
%----------
AV_0=mean(X0); % 原始序列平均值
Temp_0=(X0-AV_0).^2 ;
Temp_1=sum(Temp_0)/length(CA);
S1=sqrt(Temp_1) ; %原始序列的标准差
TempC=S2/S1*100; %方差比
C=strcat(num2str(TempC),'%') %后验差检验 %方差比
%----------
SS=0.675*S1 ;
Delta=abs(CA-AV) ;
TempN=find(Delta<=SS);
N1=length(TempN);
N2=length(CA);
TempP=N1/N2*100;
P=strcat(num2str(TempP),'%') %后验差检验 %计算小误差概率
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询