线性代数:设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0 急求啊
2个回答
展开全部
lry31383回答中 |A*| = |A|^n的条件是A可逆。实际上这个等式是由 A*A=AA*=|A|E左右取行列式得出的,但是如果A不可逆就需要单独讨论。由希尔维斯特不等式,r(AB)≥r(A)+r(B)-n.从而由于A*A=0故)n≥r(A)+r(A*)。所以当r(A)≥1时A*不满秩从而|A*|=0,当r(A)=0时A=0,由A*定义(A的代数余子式全为0)A*=0.从而结论的证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询