求证:a^2+b^2+c^2>=1/3(a+b+c)^2

鱼月一会
2011-03-13 · TA获得超过7725个赞
知道大有可为答主
回答量:1702
采纳率:0%
帮助的人:1287万
展开全部
a、b、c∈R
因a^2+b^2>=2ab
因a^2+c^2>=2ac
因b^2+c^2>=2bc
3(a^2+b^2+c^2)(a+b+c)^4
=[(a²+b²+c²)+(a²+b²)+(b²+c²)+(c²+a²)](a+b+c)^4
≥(a²+b²+c²+2ab+2bc+2ca )=(a+b+c)^2

3(a^2+b^2+c^2)(a+b+c)^4≥(a+b+c)^2
3(a^2+b^2+c^2)(a+b+c)^2≥1
所以a^2+b^2+c^2≥1/3(a+b+c)^2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式