设函数f(x)=ax^3-2bx^2+cx+4d的图像关于原点对称,且x=1时f(x)取最小值-1/3.
1个回答
展开全部
函数f(x)=ax^3-2bx^2+cx+4d的图像关于原点对称, f(x)为奇函数:
f(-x) = -ax^3 -2bx² -cx +4d = -(ax^3-2bx^2+cx+4d) = -ax^3 + 2bx^2 - cx- 4d
比较系数, b = 0, d = 0
f(x) = ax^3 +cx
f'(x) = 3ax² + c在 x=1时为0: 3a + c = 0, c = -3a
f(x) = ax^3 -3ax
f(1) = a -3a = -2a = -1/3
a = 1/6
f(x) = x^3/6 - x/2
f'(x) = (x² -1)/2
如当x∈[-1,1]时, 存在两点使得过此两点处的切线互相垂直, 设其横坐标分别为p, q, 则f'(p)*f'(q) = -1
[(p² -1)/2] * [(q² -1)/2] = -1
(p² -1)(q² -1) = -4
p∈[-1,1], q∈[-1,1], 0 ≤p² ≤ 1, 0 ≤ q² ≤1
-1 ≤p² - 1 ≤ 0, -1 ≤q² - 1 ≤ 0
-1 ≤ (p² -1)(q² -1) ≤ 1
(p² -1)(q² -1) ≠ -4
不存在此两点
f(-x) = -ax^3 -2bx² -cx +4d = -(ax^3-2bx^2+cx+4d) = -ax^3 + 2bx^2 - cx- 4d
比较系数, b = 0, d = 0
f(x) = ax^3 +cx
f'(x) = 3ax² + c在 x=1时为0: 3a + c = 0, c = -3a
f(x) = ax^3 -3ax
f(1) = a -3a = -2a = -1/3
a = 1/6
f(x) = x^3/6 - x/2
f'(x) = (x² -1)/2
如当x∈[-1,1]时, 存在两点使得过此两点处的切线互相垂直, 设其横坐标分别为p, q, 则f'(p)*f'(q) = -1
[(p² -1)/2] * [(q² -1)/2] = -1
(p² -1)(q² -1) = -4
p∈[-1,1], q∈[-1,1], 0 ≤p² ≤ 1, 0 ≤ q² ≤1
-1 ≤p² - 1 ≤ 0, -1 ≤q² - 1 ≤ 0
-1 ≤ (p² -1)(q² -1) ≤ 1
(p² -1)(q² -1) ≠ -4
不存在此两点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询