已知a:b=b:c 求证(a+b+c)的平方+a平方+b平方+c平方=2(a+b+c)(a+c)

匿名用户
2011-03-13
展开全部
证明:(a+b+c)的平方+a平方+b平方+c平方
=a平方+b平方+c平方+2ab+2ac+2bc+a平方+b平方+c平方
=2(a平方+b平方+c平方+ab+ac+bc)
又由a:b=b:c得b平方=ac
则原式=2(a平方+c平方+ab+2ac+bc)
=2[(a+c)(a+c)+b(a+c)]
=2(a+c+b)(a+c)=右边
得证。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zzfwind2007
2011-03-13 · TA获得超过3133个赞
知道小有建树答主
回答量:1163
采纳率:0%
帮助的人:1202万
展开全部
证明:因为 a/b =b/c,
所以 b^2 =ac.
所以 (a +b +c)^2 +a^2 +b^2 +c^2
= 2(a^2) +2(b^2) +2(c^2) +2ab +2bc +2ac
= 2 [ (a^2) +ac +(c^2) +ab +bc +ac ]
= 2 [ (a^2) +2ac +(c^2) +ab +bc ]
= 2 [ (a +c)^2 +b (a +c) ]
= 2 (a +b +c) (a +c).

参考资料: a

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
longandfat
2011-03-13 · TA获得超过1106个赞
知道小有建树答主
回答量:311
采纳率:0%
帮助的人:228万
展开全部
证明:由a:b=b:c,得b^2=ac。则
(a+b+c)^2+a^2+b^2+c^2=(a+b+c)^2+a^2+2b^2+c^2-b^2
=(a+b+c)^2+a^2+2ac+c^2-b^2
=(a+b+c)^2+(a+c)^2-b^2
=(a+b+c)^2+(a+c+b)(a+c-b)
=(a+b+c)(a+b+c+a+c-b)
=2(a+b+c)(a+c)
证毕
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
鱼月一会
2011-03-13 · TA获得超过7725个赞
知道大有可为答主
回答量:1702
采纳率:0%
帮助的人:1287万
展开全部
∵b²=ac
(a+b+c)²+a²+b²+c²
=2a²+2b²+2c²+2ab+2ac+2bc
=2a²+2c²+2ab+4ac+2bc
=2(a²+c²+ab+2ac+bc)
=2(a²+2ac+c²+ab+bc)
=2[(a+c)²+b(a+c)]
=2(a+c+b)(a+c)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式