1个回答
展开全部
龙女舞浅儿,你好!a=2,b=1
分析如下:
因为除式*商+余数=被除数,所以
(bx+1)*(x^3-x^2-2x+4)+(-5)=x^4-3x^2+ax-1
=>bx^4-bx^3-2bx^2+4bx+x^3-x^2-2x+4 -5=x^4-3x^2+ax-1
=>bx^4+(1-b)x^3-(2b+1)x^2+(4b-2)x-1=x^4-3x^2+ax-1
多项式的常数应对应相等,所以
得b=1,1-b=0,2b+1=3,4b-2=a,-1=-1
所以b=1,a=2
分析如下:
因为除式*商+余数=被除数,所以
(bx+1)*(x^3-x^2-2x+4)+(-5)=x^4-3x^2+ax-1
=>bx^4-bx^3-2bx^2+4bx+x^3-x^2-2x+4 -5=x^4-3x^2+ax-1
=>bx^4+(1-b)x^3-(2b+1)x^2+(4b-2)x-1=x^4-3x^2+ax-1
多项式的常数应对应相等,所以
得b=1,1-b=0,2b+1=3,4b-2=a,-1=-1
所以b=1,a=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询