二元一次方程怎么解?{举例 解答 要有过程}
1个回答
展开全部
消元的方法:
代入消元法,(常用) 加减消元法,(常用) 顺序消元法,(这种方法不常用) 顺序是对的
编辑本段消元法的例子:
x-y=3 ① 3x-8y=4② 由①得x=y+3③ ③代入②得 3(y+3)-8y=4 y=1 所以x=4 则:这个二元一次方程组的解 x=4 y=1
编辑本段教科书中没有的,但比较适用的几种解法:
(一)加减-代入混合使用的方法. 例1,13x+14y=41 (1) 14x+13y=40 (2) 解:(2)-(1)得 x-y=-1 x=y-1 (3) 把(3)代入(1)得 13(y-1)+14y=41 13y-13+14y=41 27y=54 y=2 把y=2代入(3)得 x=1 所以:x=1,y=2 最后 x=1 , y=2, 解出来 特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元. (二)代入法 是二元一次方程的另一种方法,就是说把一个方程带入另一个方程中 如: x+y=590 y+20=90%x 代入后就是: x+90%x-20=590 例2:(x+5)+(y-4)=8 (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可写为 m+n=8 m-n=4 解得m=6,n=2 所以x+5=6,y-4=2 所以x=1,y=6 特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。 (三)另类换元 例3,x:y=1:4 5x+6y=29 令x=t,y=4t 方程2可写为:5t+24t=29 29t=29 t=1 所以x=1,y=4
代入消元法,(常用) 加减消元法,(常用) 顺序消元法,(这种方法不常用) 顺序是对的
编辑本段消元法的例子:
x-y=3 ① 3x-8y=4② 由①得x=y+3③ ③代入②得 3(y+3)-8y=4 y=1 所以x=4 则:这个二元一次方程组的解 x=4 y=1
编辑本段教科书中没有的,但比较适用的几种解法:
(一)加减-代入混合使用的方法. 例1,13x+14y=41 (1) 14x+13y=40 (2) 解:(2)-(1)得 x-y=-1 x=y-1 (3) 把(3)代入(1)得 13(y-1)+14y=41 13y-13+14y=41 27y=54 y=2 把y=2代入(3)得 x=1 所以:x=1,y=2 最后 x=1 , y=2, 解出来 特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元. (二)代入法 是二元一次方程的另一种方法,就是说把一个方程带入另一个方程中 如: x+y=590 y+20=90%x 代入后就是: x+90%x-20=590 例2:(x+5)+(y-4)=8 (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可写为 m+n=8 m-n=4 解得m=6,n=2 所以x+5=6,y-4=2 所以x=1,y=6 特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。 (三)另类换元 例3,x:y=1:4 5x+6y=29 令x=t,y=4t 方程2可写为:5t+24t=29 29t=29 t=1 所以x=1,y=4
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询