已知1/x-1/y=3,则代数式(2x-4xy-2y)/(x-2xy-y)的值是多少
1个回答
展开全部
解:∵(1/x)-(1/y)=3
∴[(y-x)/xy]=3
∴y-x=3xy
(2x-4xy-2y)/(x-2xy-y)
原式= [2(x-2xy-y)]/(x-2xy-y)
=2
其实这只是巧合而以; 题意是要求进一步化简 如下:
(2x-4xy-2y)/(x-2xy-y)
原式= 2(x-2xy-y)/(x-2xy-y)
=2
∵y-x=3xy
∴2(x-2xy-y)/(x-2xy-y)
={2[(x-y)-2xy]}/[(x-y)-2xy]
=[2(-3xy-2xy)]/(-3xy-2xy)
=[2(-5xy)]/(-5xy)
=(-10xy)/(-5xy)
=2
∴[(y-x)/xy]=3
∴y-x=3xy
(2x-4xy-2y)/(x-2xy-y)
原式= [2(x-2xy-y)]/(x-2xy-y)
=2
其实这只是巧合而以; 题意是要求进一步化简 如下:
(2x-4xy-2y)/(x-2xy-y)
原式= 2(x-2xy-y)/(x-2xy-y)
=2
∵y-x=3xy
∴2(x-2xy-y)/(x-2xy-y)
={2[(x-y)-2xy]}/[(x-y)-2xy]
=[2(-3xy-2xy)]/(-3xy-2xy)
=[2(-5xy)]/(-5xy)
=(-10xy)/(-5xy)
=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询