数学小问题,求各位给予帮助,谢谢
1.如果等边三角形的周长为m米,面积为S平方米,那么面积S关于m的函数解析式为()2.将二次函数y=(x-1)^2-4的图像向右平移几个单位,可使平移后的图像过坐标原点。...
1.如果等边三角形的周长为m米,面积为S平方米,那么面积S关于m的函数解析式为( )
2.将二次函数y=(x-1)^2-4的图像向右平移几个单位,可使平移后的图像过坐标原点。直接写出平移后的图像与x轴的另外一个交点坐标。 展开
2.将二次函数y=(x-1)^2-4的图像向右平移几个单位,可使平移后的图像过坐标原点。直接写出平移后的图像与x轴的另外一个交点坐标。 展开
2个回答
展开全部
1.等边三角形的三边长相等,所以边长等于m/3,所以三角形的高等于(m√3)/6,所以面积S=0.5(m/3)*[(m√3)/6]=(m^2*√3)/36。
2.二次函数过原点的条件是y=ax^2+bx,只有当y=(x-2)^2-4时或y=(x+2)^2-4时c=0,题中要求向右平移,所以是函数y=(x-2)^2-4,向右平移一个单位,另一个交点的坐标是求(x-2)^2-4=0的根,即点(4,0)。
2.二次函数过原点的条件是y=ax^2+bx,只有当y=(x-2)^2-4时或y=(x+2)^2-4时c=0,题中要求向右平移,所以是函数y=(x-2)^2-4,向右平移一个单位,另一个交点的坐标是求(x-2)^2-4=0的根,即点(4,0)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询