微分方程y''-3y'+2y=5,y(0)=1,y'(0)=2求解过程
展开全部
分为齐次解和特解
齐次解:y''-3y'+2y = 0
特征方程:r^2 - 3r + 2 = 0
r= 1 或 2
齐次解:y = c1*e^x + c2*e^(2x)
特解:y* = c3
代入原方程得:0-0+2c3=5
c3=5/2
所以原方程的通解是y=c1*e^x + c2*e^(2x)+5/2
y(0)=1,即c1+c2+5/2=1
y'=c1*e^x+2*c2*e^(2x)
y'(0)=2,即c1+2c2=2
解得c1=-5,c2=7/2
所以原方程的解是y=-5*e^x + 7/2 *e^(2x)+5/2
齐次解:y''-3y'+2y = 0
特征方程:r^2 - 3r + 2 = 0
r= 1 或 2
齐次解:y = c1*e^x + c2*e^(2x)
特解:y* = c3
代入原方程得:0-0+2c3=5
c3=5/2
所以原方程的通解是y=c1*e^x + c2*e^(2x)+5/2
y(0)=1,即c1+c2+5/2=1
y'=c1*e^x+2*c2*e^(2x)
y'(0)=2,即c1+2c2=2
解得c1=-5,c2=7/2
所以原方程的解是y=-5*e^x + 7/2 *e^(2x)+5/2
追问
为什么设特解的时候是设y* = c3,而不是y* = c3x或其它的呢???
追答
因为方程y''-3y'+2y=5,等号后边是5,是一个常数,所以特解设的时候也是一个常数,
若方程y''-3y'+2y=5x,此时特解设为y* = c3x,不知这样说你能理解不?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询