
已知tan^2阿尔法=2tan^2贝塔+1,求证:sin^2贝塔=2sin^2阿尔法-1
6个回答
展开全部
tan²α=sin²α/cos²α=sin²α/(1-sin²α)
tan²β=sin²β/coβ²α=sin²β/(1-sin²β)
代入第一个等式,得
sin²α/(1-sin²α)=2sin²β/(1-sin²β)+1
通分化简即得要证的结果
手机提问只能输100个字
tan²β=sin²β/coβ²α=sin²β/(1-sin²β)
代入第一个等式,得
sin²α/(1-sin²α)=2sin²β/(1-sin²β)+1
通分化简即得要证的结果
手机提问只能输100个字
展开全部
(sinα/cosα)^2=2(sinβ/cosβ)^2+1 两边乘以(cosαcosβ)^2,移项化简
(cosβ)^2((sinα)^2-(cosα)^2)=2(sinβcosα)^2
(1-(sinβ)^2)(2(sinα)^2-1)=2(sinβ)^2(1-(sinα)^2)展开,化简
2(sinα)^2-1=(sinβ)^2
(cosβ)^2((sinα)^2-(cosα)^2)=2(sinβcosα)^2
(1-(sinβ)^2)(2(sinα)^2-1)=2(sinβ)^2(1-(sinα)^2)展开,化简
2(sinα)^2-1=(sinβ)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-03-14
展开全部
san阿尔法的平方+san贝塔的平方=1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin²α/cos²α=2sin²β/cos²β+1
sin²α/(1-sin²α)=(sin²β+1)/(1-sin²β)
sin²α(1-sin²β)=(1-sin²α)(sin²β+1)
sin²α-sin²βsin²α=sin²β-sin²αsin²β+1-sin²α
sin²β=2sin²α-1
sin²α/(1-sin²α)=(sin²β+1)/(1-sin²β)
sin²α(1-sin²β)=(1-sin²α)(sin²β+1)
sin²α-sin²βsin²α=sin²β-sin²αsin²β+1-sin²α
sin²β=2sin²α-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=sin^a/cos^a=2sin^b/cos^b+1
sin^acos^b-sin^bcos^a=sin^bcos^a+cos^acos^b=cos^a=1-sin^a
sin^a(1-sin^b)-sin^bcos^a=1-sin^a
sin^a-sin^b(sin^a+cos^a)=1-sin^a
sin^a-sin^b=1-sin^a
2sin^2a-1=sin^b
sin^acos^b-sin^bcos^a=sin^bcos^a+cos^acos^b=cos^a=1-sin^a
sin^a(1-sin^b)-sin^bcos^a=1-sin^a
sin^a-sin^b(sin^a+cos^a)=1-sin^a
sin^a-sin^b=1-sin^a
2sin^2a-1=sin^b
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询