高三数学问题,急
有两条题目:1:动点P与点F(1,0)的距离和它到直线l:x=-1的距离相等,记点P的轨迹为曲线C1圆C2的圆心T是曲线C1上的动点,圆C2与y轴交于M,N两点,且/MN...
有两条题目:
1: 动点P与点F(1,0)的距离和它到直线l:x=-1的距离相等,记点P的轨迹为曲线C1圆C2的圆心T是曲线C1上的动点,圆C2与y轴交于M,N两点,且/MN/=4
求曲线C1的方程
2: 已知涵数f(x)=2sinxcosx+cos2(x属于R
求f(x)的最小正周期和最大值 展开
1: 动点P与点F(1,0)的距离和它到直线l:x=-1的距离相等,记点P的轨迹为曲线C1圆C2的圆心T是曲线C1上的动点,圆C2与y轴交于M,N两点,且/MN/=4
求曲线C1的方程
2: 已知涵数f(x)=2sinxcosx+cos2(x属于R
求f(x)的最小正周期和最大值 展开
9个回答
展开全部
1、动点的轨迹是以F(1,0)为焦点、以直线x=-1为准线的抛物线,p=2,则动点的轨迹方程是y²=4x。由于点T在曲线C1上,设T(t²,2t),圆C2的半径为R,利用垂径定理,得R²=(t²)²+4,圆心到直线x=-1的距离为d=t²+1,R²-d²=[(t²)²+4]-(t²+1)²=3-2t²,可根据t的取值,判断R与d的大小关系,从而判断出直线x=-1与圆C2的位置关系。
2、f(x)=2sinxcosx+cos2x
=sin2x+cos2x
=√2sin(2x+π/4)
最小正周期T=2π/|ω|=2π/2=π,函数的最大值为√2,当且仅当2x+π/4=2kπ+π/2即x=kπ+π/8时取得,其中k为整数。
2、f(x)=2sinxcosx+cos2x
=sin2x+cos2x
=√2sin(2x+π/4)
最小正周期T=2π/|ω|=2π/2=π,函数的最大值为√2,当且仅当2x+π/4=2kπ+π/2即x=kπ+π/8时取得,其中k为整数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.
设动点P的坐标为(x,y)
由题意,得
√[(x-1)^2+(y-0)^2]=|x+1|
整理,得
x=y^2/4,这就是曲线C1的方程。
2.
题目每写全,应该是f(x)=2sinxcosx+cos(2x)吧。
f(x)=2sinxcosx+cos(2x)
=sin(2x)+cos(2x)
=√2sin[2(x+π/8)]
最小正周期Tmin=2π/2=π
当2(x+π/8)=2kπ+π/2 (k∈Z)时,有f(x)max=√2
设动点P的坐标为(x,y)
由题意,得
√[(x-1)^2+(y-0)^2]=|x+1|
整理,得
x=y^2/4,这就是曲线C1的方程。
2.
题目每写全,应该是f(x)=2sinxcosx+cos(2x)吧。
f(x)=2sinxcosx+cos(2x)
=sin(2x)+cos(2x)
=√2sin[2(x+π/8)]
最小正周期Tmin=2π/2=π
当2(x+π/8)=2kπ+π/2 (k∈Z)时,有f(x)max=√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
P(x,y)
则PF=√(x-1)²+y²]
P到x=-1距离=|x-(-1)|=|x+1|
√(x-1)²+y²]=|x+1|
平方
x²-2x+1+y²=x²+2x+1
所以C1是y²=4x
f(x)=sin2x+cos2x
=√2(√2/2*sin2x+√2/2cos2x)
=√2(sin2xcosπ/4+cos2xsinπ/4)
=√2sin(2x+π/4)
所以T=2π/2=π
最大值=√2
P(x,y)
则PF=√(x-1)²+y²]
P到x=-1距离=|x-(-1)|=|x+1|
√(x-1)²+y²]=|x+1|
平方
x²-2x+1+y²=x²+2x+1
所以C1是y²=4x
f(x)=sin2x+cos2x
=√2(√2/2*sin2x+√2/2cos2x)
=√2(sin2xcosπ/4+cos2xsinπ/4)
=√2sin(2x+π/4)
所以T=2π/2=π
最大值=√2
则PF=√(x-1)²+y²]
P到x=-1距离=|x-(-1)|=|x+1|
√(x-1)²+y²]=|x+1|
平方
x²-2x+1+y²=x²+2x+1
所以C1是y²=4x
f(x)=sin2x+cos2x
=√2(√2/2*sin2x+√2/2cos2x)
=√2(sin2xcosπ/4+cos2xsinπ/4)
=√2sin(2x+π/4)
所以T=2π/2=π
最大值=√2
P(x,y)
则PF=√(x-1)²+y²]
P到x=-1距离=|x-(-1)|=|x+1|
√(x-1)²+y²]=|x+1|
平方
x²-2x+1+y²=x²+2x+1
所以C1是y²=4x
f(x)=sin2x+cos2x
=√2(√2/2*sin2x+√2/2cos2x)
=√2(sin2xcosπ/4+cos2xsinπ/4)
=√2sin(2x+π/4)
所以T=2π/2=π
最大值=√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1:设P(x,y)
x+1=根号下(x-1)^2+y^2
两边平方后化简得C1:y^2=4x
2:不知你题目是不是写错
f(x)=2sinxcosx+cos2=sin2x+cos2
最小正周期为π,最大值为1+cos2
另:f(x)=2sinxcosx+cos2x=sin2x+cos2x=根号2倍的sin(2x+π/4)
最小正周期为π,最大值为根号2
x+1=根号下(x-1)^2+y^2
两边平方后化简得C1:y^2=4x
2:不知你题目是不是写错
f(x)=2sinxcosx+cos2=sin2x+cos2
最小正周期为π,最大值为1+cos2
另:f(x)=2sinxcosx+cos2x=sin2x+cos2x=根号2倍的sin(2x+π/4)
最小正周期为π,最大值为根号2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.题目写全了吗? C1: y^2=4x
2 .f(x)=sin2x+cos2x=√2sin(2x+pi/4) so T=pi f(x)max=√2
2 .f(x)=sin2x+cos2x=√2sin(2x+pi/4) so T=pi f(x)max=√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询