不定积分,定积分,原函数之间有什么关系 区别。谢谢各位前辈从理论上说明。

 我来答
飘飘记
高粉答主

2019-08-22 · 人生,就是一趟没有回程的旅途
飘飘记
采纳数:80 获赞数:119595

向TA提问 私信TA
展开全部

一、理论不同

1、不定积分是一个函数集(各函数只相差一个常数),它就是所积函数的原函数(个数是无穷)。

定积分(它是一个数,常数),它可以通过不定积分来求得(牛顿莱布尼茨公式)。

2、函数 f(x)的定积分与这个函数的原函数F(x) 是紧密联系的. 定积分是由函数话f(x)确定的的某个值(一个数),而原函数F(x)是一个函数,它的导数是f(x),而不定积分是所有的原函数。

3、不定积分计算的是原函数(得出的结果是一个式子);定积分计算的是具体的数值(得出的借给是一个具体的数字)

扩展资料

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

性质

1、函数的和的不定积分等于各个函数的不定积分的和;即:设函数

 

 

的原函数存在,则

2、求不定积分时,被积函数中的常数因子可以提到积分号外面来。即:设函数

 

的原函数存在,

 

非零常数,则

参考资料来源:百度百科-不定积分

参考资料来源:百度百科-定积分

参考资料来源:百度百科-原函数

轮看殊O
高粉答主

2019-05-12 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:772万
展开全部

联系:不定积分是所有原函数的称呼,可以理解为同一个东西,是微分的逆问题。

区别:

1.不定积分是一个函数集(各函数只相差一个常数),它就是所积函数的原函数(个数是无穷)。

定积分(它是一个数,常数),它可以通过不定积分来求得(牛顿莱布尼茨公式)。

2.函数 f(x)的定积分与这个函数的原函数F(x) 是紧密联系的. 定积分是由函数话f(x)确定的的某个值(一个数),而原函数F(x)是一个函数,它的导数是f(x),而不定积分是所有的原函数。

3.不定积分计算的是原函数(得出的结果是一个式子);定积分计算的是具体的数值(得出的借给是一个具体的数字)

扩展资料

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zyymat
推荐于2017-10-13
知道答主
回答量:29
采纳率:0%
帮助的人:11万
展开全部
不定积分是所有原函数的称呼,可以理解为同一个东西,是微分的逆问题,而定积分是另一件事情。但是,函数 f(x)的定积分与这个函数的原函数F(x) 是紧密联系的. 定积分是由函数话f(x)确定的的某个值(一个数),而原函数F(x)是一个函数,它的导数是f(x),而不定积分是所有的原函数。计算一个函数的定积分,往往要用到原函数或者说不定积分,这个关系由基本定理给出。
重大的考试中,一般考定积分 . 传统的数学教材都是单独一章谈谈不定积分,然后接着下一章介绍定积分。观念新的写书者不这样做:直接讲定积分,在计算定积分的时候,附带说下不定积分
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
danqiang44
2011-03-16 · TA获得超过976个赞
知道小有建树答主
回答量:342
采纳率:100%
帮助的人:422万
展开全部
不定积分是一个函数集(各函数只相差一个常数),它就是所积函数的原函数(个数是无穷)
至于定积分(它是一个数,常数),它可以通过不定积分来求得(牛顿莱布尼茨公式)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
你的眼神唯美
2020-07-30 · 海离薇:不定积分,求导验证。
你的眼神唯美
采纳数:1541 获赞数:61962

向TA提问 私信TA
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式