什么是隐函数

 我来答
客户名称
推荐于2016-12-01 · TA获得超过332个赞
知道小有建树答主
回答量:112
采纳率:0%
帮助的人:94.2万
展开全部
  一般地,如果变量x和y满足一个方程F(x,y)=0,在一定条件下,当x取某区间内的任一值时,相应地总有满足这个方程的唯一的y值(不一定唯一,如x^2+y^2=1)存在,那么就说方程F(x,y)=0在该区间内确定了一个隐函数

  一、特点:
  隐函数不一定能写为y=f(x)的形式,如x^2+y^2=1。因此按照函数“设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作 y=f(x).”的定义,隐函数不一定是“函数”,而是“方程”。 其实总的说来,函数都是方程,但方程却不一定是函数。

  二、求导法则
  对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。 隐函数导数的求解一般可以采用以下方法: 隐函数左右两边对x求导(但要注意把y看作x的函数); 利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值; 把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'yF'x分别表示y和x对z的偏导数)来求解。
  三、其他请参考:http://baike.baidu.com/view/1117168.htm

参考资料: http://baike.baidu.com/view/1117168.htm

冠片N
高粉答主

2020-11-09 · 繁杂信息太多,你要学会辨别
知道答主
回答量:11.8万
采纳率:1%
帮助的人:6323万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式