若x-y=5,y-z=4,试求x的平方+y的平方+z的平方-xy-yz-xz的值
4个回答
展开全部
解:x-z=x-y)+(y-z)=5+4=81
所以x^2+y^2+z^2-xy-yz-xz
=(2x^2+2y^2+2z^2-2xy-2yz-2xz)/2
=〔(x-y)^2+(y-z)^2+(x-z)^2〕/2
=(5^2+4^2+9^1)/2
=61
所以x^2+y^2+z^2-xy-yz-xz
=(2x^2+2y^2+2z^2-2xy-2yz-2xz)/2
=〔(x-y)^2+(y-z)^2+(x-z)^2〕/2
=(5^2+4^2+9^1)/2
=61
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^2+y^2+z^2-xy-yz-xz
=(1/2)*2(x^2+y^2+z^2-xy-yz-xz)
=(1/2)*(x^2+y^2-2xy+x^2+z^2-2xz+y^2-z^2-2yz)
=(1/2)*[(x-y)^2+(x-z)^2+(y-z)^2]
=(1/2)*[25+(5+4)^2+16]
=61
=(1/2)*2(x^2+y^2+z^2-xy-yz-xz)
=(1/2)*(x^2+y^2-2xy+x^2+z^2-2xz+y^2-z^2-2yz)
=(1/2)*[(x-y)^2+(x-z)^2+(y-z)^2]
=(1/2)*[25+(5+4)^2+16]
=61
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=0.5[(x-y)^2+(y-z)^2+(x-z)^2]
=0.5(25+16+81)
=61
=0.5(25+16+81)
=61
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=(1/2)*2(x^2+y^2+z^2-xy-yz-xz)
=(1/2)*(x^2+y^2-2xy+x^2+z^2-2xz+y^2-z^2-2yz)
=(1/2)*[(x-y)^2+(x-z)^2+(y-z)^2]
=(1/2)*[25+(5+4)^2+16]
=61
=(1/2)*(x^2+y^2-2xy+x^2+z^2-2xz+y^2-z^2-2yz)
=(1/2)*[(x-y)^2+(x-z)^2+(y-z)^2]
=(1/2)*[25+(5+4)^2+16]
=61
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询