已知数列{an}的通项公式an=2n+1,由bn=a1+a2+a3+…an/n所确定的数列{bn}的前n项之和是

sxd0117
2011-03-16 · TA获得超过353个赞
知道小有建树答主
回答量:365
采纳率:100%
帮助的人:210万
展开全部
数列{an}的前n项和Sn=(a1+an)n/2=(n+2)n
所以bn=Sn/n=n+2为等差数列
故数列{bn}的前n项之和Tn=(b1+bn)n/2=(3+n+2)n/2=(n^2+5n)/2

如果是bn=a1+a2+a3+…+(an/n)
=(Sn-1)+an/n
=[(n+1)(n-1)]+(2n+1)/n
=n^2-1+2+1/n
=n^2+(1/n)+1
故数列{bn}的前n项之和Tn=(1^2+2^2+3^2+ +n^2)+(1/1+1/2+1/3+ +1/n)+n
xuzhouliuying
高粉答主

2011-03-16 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.5亿
展开全部
an=2n+1
bn=(a1+a2+...+an)/n
=[2(1+2+...+n)+n]/n
=[n(n+1)+n]/n
=n+2
Sn=b1+b2+...+bn
=(1+2+...+n)+2n
=n(n+1)/2+2n
=n(n+5)/2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
quicker2011
2011-03-16 · 超过10用户采纳过TA的回答
知道答主
回答量:79
采纳率:0%
帮助的人:43.6万
展开全部
bn=a1+a2+a3+…an/n??????????
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式