分式方程中分母是未知数的该怎么解
展开全部
解分式方程,运用的主要思想是数学思想中的化归思想,将难解的分式方程转化为我们熟悉的整式方程,运用解整式方程的方法求解,最后检验。
具体步骤:
①去分母
方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
②移项
移项,若有括号应先去括号,注意变号,合并同类项,把系数化为1 求出未知数的值;
③验根(解)
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。(分式方程中要求分母不为0,所以使分母为0的解是增根)
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根都是增根,则原方程无解。
如果分式本身约分了,也要代入进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
★注意
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。
归纳及例题:
(1)x/(x+1)=2x/(3x+3)+1
两边乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
-2x=3
x=3/-2
经检验,x=-3/2是方程的解
(2)2/(x-1)=4/(x^2-1)
两边乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
把x=1代入原方程,分母为0,所以x=1是增根。
所以原方程无解
(3)
解:两边乘(x+3)(x-1)
2x-2=x+3
2x-x=3+2
x=5
经检验:x=5是方程的解
一定要检验!
例:
2x-3+1/(x-5)=x+2+1/(x-5)
两边同时减1/(x-5),得x=5
代入原方程,使分母为0,所以x=5是增根
所以原方程无解!
检验格式:把x=a 带入最简公分母,若x=a使最简公分母为0,则a是原方程的增根。若x=a使最简公分母不为零,则a是原方程的根。
参考资料:http://baike.baidu.com/link?url=7BJUVYkkLJbkFuUabpPD-rqRGiWZTTt7YONOLcgSgqbcHRF-MYDhiaGuHHDEyZIl6zofGjXch5tn14gkDVJh2_
具体步骤:
①去分母
方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
②移项
移项,若有括号应先去括号,注意变号,合并同类项,把系数化为1 求出未知数的值;
③验根(解)
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根。(分式方程中要求分母不为0,所以使分母为0的解是增根)
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根都是增根,则原方程无解。
如果分式本身约分了,也要代入进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
★注意
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。
归纳及例题:
(1)x/(x+1)=2x/(3x+3)+1
两边乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
-2x=3
x=3/-2
经检验,x=-3/2是方程的解
(2)2/(x-1)=4/(x^2-1)
两边乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
把x=1代入原方程,分母为0,所以x=1是增根。
所以原方程无解
(3)
解:两边乘(x+3)(x-1)
2x-2=x+3
2x-x=3+2
x=5
经检验:x=5是方程的解
一定要检验!
例:
2x-3+1/(x-5)=x+2+1/(x-5)
两边同时减1/(x-5),得x=5
代入原方程,使分母为0,所以x=5是增根
所以原方程无解!
检验格式:把x=a 带入最简公分母,若x=a使最简公分母为0,则a是原方程的增根。若x=a使最简公分母不为零,则a是原方程的根。
参考资料:http://baike.baidu.com/link?url=7BJUVYkkLJbkFuUabpPD-rqRGiWZTTt7YONOLcgSgqbcHRF-MYDhiaGuHHDEyZIl6zofGjXch5tn14gkDVJh2_
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询