证明函数F(X)=2/X+1在区间(-∞,0)上是减函数。

各位大哥大姐帮帮我怎么解... 各位大哥大姐帮帮我怎么解 展开
此人非大侠
推荐于2017-09-02 · TA获得超过2912个赞
知道小有建树答主
回答量:667
采纳率:0%
帮助的人:1001万
展开全部
设x1<x2<0
f(x1)-f(x2)
=(2/x1+1)-(2/x2+1)
=2(x2-x1)/(x1x2)
又x1<x2<0,所以x2-x1>0,x1x2>0
所以f(x1)-f(x2)>0
即f(x1)>f(x2)
所以f(X)=2/X+1在区间(-∞,0)上是减函数
百度网友38fb55f
2011-03-18
知道答主
回答量:15
采纳率:0%
帮助的人:6.3万
展开全部
法一:设x1 x2属于(-∞,0)且x1<x2;F(X1)-F(X2)=2(x2-x1)/(x1*x2);
因为X1*X2>0且X2-X1>0所以F(X1)-F(X2)>0;故F(X)=2/X+1在区间(-∞,0)上是减函数
法二:直接求导判断导数在(-∞,0)上的正负。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
呼噜噜0620
2011-03-18 · TA获得超过120个赞
知道答主
回答量:88
采纳率:0%
帮助的人:0
展开全部
因为F(x)=2/x+1
所以F'(x)=-2/x^2
当x<0时F'(x)<0
所以当x<0时F(x)为递减函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
calz311
2011-03-18 · TA获得超过305个赞
知道小有建树答主
回答量:194
采纳率:0%
帮助的人:168万
展开全部
x1<x2
F(x2)-F(x1)=2/x2+1-(2/x1+1)=2/x2-2/x1=2*(x1-x2)/(x1*x2)<0(x1-x2<0,x1*x2>0)
所以为减函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
九菜芹
2011-03-18 · TA获得超过2822个赞
知道小有建树答主
回答量:259
采纳率:0%
帮助的人:169万
展开全部
求导,F'(x)=-2/(x*x)<0所以在定义域内单调减
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式