【高二数学】求下列函数在给定区间的极值
第一题:F(X)=X^3-12X,X∈[-3,3]第二题:F(X)=48X-X^3,∈[-3,5]...
第一题:F(X)=X^3-12X,X∈[-3,3]
第二题:F(X)=48X-X^3,∈[-3,5] 展开
第二题:F(X)=48X-X^3,∈[-3,5] 展开
3个回答
展开全部
1)f'(x)=3x^2-12 => 极值点 x1=2、x2=-2 两个极值点都在考察区域内
∴极大值 f(-2)=(-2)^3-12(-2)=-8+24=16
极小值 f(2)=2^3-12*2=8-24=-16
2)f'(x)=48-3x^2 => 极值点 x1=4、x2=-4
∵x=-4落在考察范围外,故不计算,在x1=4附近f'(x)由大于0变化为小于0,即函数图像上凸,故在 x=4 上函数取得极大值。
∴极大值 f(4)=48*4-4^3=192-64=128
∴极大值 f(-2)=(-2)^3-12(-2)=-8+24=16
极小值 f(2)=2^3-12*2=8-24=-16
2)f'(x)=48-3x^2 => 极值点 x1=4、x2=-4
∵x=-4落在考察范围外,故不计算,在x1=4附近f'(x)由大于0变化为小于0,即函数图像上凸,故在 x=4 上函数取得极大值。
∴极大值 f(4)=48*4-4^3=192-64=128
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1,当F(X)=0时,的X=-2√3 ,X=0 ,X=2√3,
求一次导,的f'(x)=3x^2-12 => 极值点 x1=2、x2=-2 两个极值点都在考察区域内
∴极大值 f(-2)=(-2)^3-12×(-2)=-8+24=16
极小值 f(2)=2^3-12×2=8-24=-16
求一次导,的f'(x)=3x^2-12 => 极值点 x1=2、x2=-2 两个极值点都在考察区域内
∴极大值 f(-2)=(-2)^3-12×(-2)=-8+24=16
极小值 f(2)=2^3-12×2=8-24=-16
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询