高二数学导数的题
过曲线L:y=x²-1(x>0)上的点P作L的切线,与坐标轴交于M、N两点,试求P点的坐标,使△OMN的面积最小。请加以解释,谢谢!...
过曲线L:y=x²-1(x>0)上的点P作L的切线,与坐标轴交于M、N两点,试求P点的坐标,使△OMN的面积最小。
请加以解释,谢谢! 展开
请加以解释,谢谢! 展开
2个回答
展开全部
设p点坐标为(a,a²-1)【y=x²-1】
切线斜率为y’=2x
解得:则切线方程为y-(a²-1)=2a(x-a)
切线与x轴交点M横坐标为a+(1-a^2)/2a
切线与y轴交点N纵坐标为-1-a^2
则△OMN的面积S=(1/2)[a+(1-a^2)/2a][1+a^2]=(a^2+1)^2/4a
求S的导数,令其为零,
解得:a=根号3/3
解得:则P点为(根号3/3,-2/3).
将a=根号3/3代入:
则△OMN的面积S=(1/2)[a+(1-a^2)/2a][1+a^2]=(a^2+1)^2/4a
即可求出S。
切线斜率为y’=2x
解得:则切线方程为y-(a²-1)=2a(x-a)
切线与x轴交点M横坐标为a+(1-a^2)/2a
切线与y轴交点N纵坐标为-1-a^2
则△OMN的面积S=(1/2)[a+(1-a^2)/2a][1+a^2]=(a^2+1)^2/4a
求S的导数,令其为零,
解得:a=根号3/3
解得:则P点为(根号3/3,-2/3).
将a=根号3/3代入:
则△OMN的面积S=(1/2)[a+(1-a^2)/2a][1+a^2]=(a^2+1)^2/4a
即可求出S。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询