如图,设三角形ABC是直角三角形,点D在斜边BC上,BD=4DC,已知圆过点C且与AC相交于F,与AB相切于AB中点G,

求证AD垂直BF... 求证AD垂直BF 展开
 我来答
3126071219
2013-08-04
知道答主
回答量:27
采纳率:0%
帮助的人:9.1万
展开全部
取BC中点O,连结BO并延长交AD的延长线于H.
易证AC/OH=CD/DO=2/3.
又∵OG是中位线,
∴OG=1/2AC.
∴HG=2AC.
由切割线定理,得:AG方=AF·AC.
∴tan∠GAH/tan∠AFB=(HG/AG)/(AB/AF)=(2AC/AG)/(2AG/AF)=(AF·AC)/AG方=1.
即tan∠GAH=tan∠AFB.
∴∠GAH=∠AFB.
∴AD⊥BF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式