化工专业英语求翻译
Hollowpolymericsphereshavebeenattractingincreasinginterestbecauseoftheirpotentialappl...
Hollow polymeric spheres have been attracting increasing
interest because of their potential applications, which range
from targeted drug delivery to advanced functional materi-
als.[1,2] Because of their hollow core structure, such polymeric
spheres can encapsulate large quantities of guest moleculesÐ
especially those spheres with functionalities within the empty
coreÐand release them at a later stage in a controlled man-
ner. Although hollow polymeric spheres with dimensions in
the micrometer and submicrometer regions are readily con-
structedÐby layer-by-layer deposition of polyelectrolytes
onto a template core,[3±6] polymerizing monomers in lipid vesi-
cles,[7,8] emulsion polymerization,[9,10] pH-induced micelliza-
tion of a grafted copolymer,[11] and by the assembly of posi-
tively charged polyelectrolytes and negatively charged
nanoparticles[12]Ðthe synthesis of hollow spheres 100 nm or
less in size has only recently become the subject of research
activity. Several different routes, such as the self-assembly of
block copolymers in a selective solvent,[13,14] the deposition of
polyelectrolytes on a decomplexable or soluble core,[15,16] and
microemulsion (as well as miniemulsion) polymerization,[17,18]
have been developed to form hollow polymeric nanospheres.
Although some of these methods have been quite successful,
these strategies require the core templates to be removed in
order to create a hollow interior, or need large quantities of
surfactants to form nanosized micelles. Furthermore, although
the majority of the proposed applications of hollow nano-
spheres or nanocapsules are concentrated in the biomedical
field, most of the hollow polymeric spheres described to date
are ill-suited for such purposes. Therefore, materials (in par-
ticular for the surfaces of the hollow nanospheres) that are
biocompatible, non-toxic, and sometimes also biodegradable,
are highly desirable. Herein, we demonstrate a simple and di-
rect method for fabricating hollow polymeric nanospheres
with biocompatible and biodegradable macromolecules. In
this approach, hollow polymeric nanospheres were formed in
a completely aqueous system without the aid of surfactants, 展开
interest because of their potential applications, which range
from targeted drug delivery to advanced functional materi-
als.[1,2] Because of their hollow core structure, such polymeric
spheres can encapsulate large quantities of guest moleculesÐ
especially those spheres with functionalities within the empty
coreÐand release them at a later stage in a controlled man-
ner. Although hollow polymeric spheres with dimensions in
the micrometer and submicrometer regions are readily con-
structedÐby layer-by-layer deposition of polyelectrolytes
onto a template core,[3±6] polymerizing monomers in lipid vesi-
cles,[7,8] emulsion polymerization,[9,10] pH-induced micelliza-
tion of a grafted copolymer,[11] and by the assembly of posi-
tively charged polyelectrolytes and negatively charged
nanoparticles[12]Ðthe synthesis of hollow spheres 100 nm or
less in size has only recently become the subject of research
activity. Several different routes, such as the self-assembly of
block copolymers in a selective solvent,[13,14] the deposition of
polyelectrolytes on a decomplexable or soluble core,[15,16] and
microemulsion (as well as miniemulsion) polymerization,[17,18]
have been developed to form hollow polymeric nanospheres.
Although some of these methods have been quite successful,
these strategies require the core templates to be removed in
order to create a hollow interior, or need large quantities of
surfactants to form nanosized micelles. Furthermore, although
the majority of the proposed applications of hollow nano-
spheres or nanocapsules are concentrated in the biomedical
field, most of the hollow polymeric spheres described to date
are ill-suited for such purposes. Therefore, materials (in par-
ticular for the surfaces of the hollow nanospheres) that are
biocompatible, non-toxic, and sometimes also biodegradable,
are highly desirable. Herein, we demonstrate a simple and di-
rect method for fabricating hollow polymeric nanospheres
with biocompatible and biodegradable macromolecules. In
this approach, hollow polymeric nanospheres were formed in
a completely aqueous system without the aid of surfactants, 展开
3个回答
展开全部
中空聚合物微球已吸引了越来越多的
interest because of their potential
applications, which range
的兴趣,因为其潜在的应用,其范围
from targeted drug delivery to advanced
functional materi-
靶向给药的先进功能材料—
als.[1,2] Because of their hollow core
structure, such polymeric
ALS。[ 1,2
]由于他们的空心结构,这样的聚合物
spheres can encapsulate large quantities of
guest moleculesÐ
球可以封装客体分子的大量Ð
especially those spheres with functionalities
within the empty
特别是那些球的功能内的空
coreÐand release them at a later stage in a
controlled man-
在受控制的人在后一阶段的核心Ð和释放他们—
ner. Although hollow polymeric spheres with
dimensions in
押尼珥。虽然中空聚合物微球的尺寸
the micrometer and submicrometer regions are
readily con-
的微米和亚微米区域容易控制—
structedÐby layer-by-layer deposition of
polyelectrolytes
结构化Ð层由聚电解质层沉积
onto a template core,[3±6] polymerizing
monomers in lipid vesi-
在模板的核心,[ 6 ] 3±聚合单体脂水—
cles,[7,8] emulsion polymerization,[9,10]
pH-induced micelliza-
式,[
7,8 ]乳液聚合,[ 9 ] pH诱导micelliza—
tion of a grafted copolymer,[11] and by the
assembly of posi-
的接枝共聚物中,[ 11
]通过定位组件—
tively charged polyelectrolytes and negatively
charged
\地电荷的聚电解质和负电荷
nanoparticles[12]Ðthe synthesis of hollow
spheres 100 nm or
[ 12 ]Ð纳米空心球的合成或100
nm
less in size has only recently become the
subject of research
体积小,只是最近才成为研究的主体
activity. Several different routes, such as the
self-assembly of
活动。几种不同的路线,如自组装
block copolymers in a selective solvent,[13,14]
the deposition of
在选择性溶剂中的嵌段共聚物,[ 13,14 ]沉积
polyelectrolytes on a decomplexable or soluble
core,[15,16] and
在decomplexable或可溶芯的聚电解质,[15,16]和
microemulsion (as well as miniemulsion)
polymerization,[17,18]
微乳(以及细乳液聚合,[17,18])
have been developed to form hollow polymeric
nanospheres.
已形成的中空聚合物微球。
Although some of these methods have been quite
successful,
虽然这些方法已经很成功,
these strategies require the core templates to
be removed in
这些策略需要核心模板被删除
order to create a hollow interior, or need
large quantities of
为了创造一个中空的内部,或需要大量的
surfactants to form nanosized micelles.
Furthermore, although
表面活性剂形成纳米胶束。此外,虽然
the majority of the proposed applications of
hollow nano-
所提出的应用纳米空心多数—
spheres or nanocapsules are concentrated in the
biomedical
球或纳米胶囊都集中在生物医学
field, most of the hollow polymeric spheres
described to date
领域,大多数的中空聚合物微球的描述日期
are ill-suited for such purposes. Therefore,
materials (in par-
不适合这样的目的。因此,材料(在平价—
ticular for the surfaces of the hollow
nanospheres) that are
]特殊的纳米空心球的表面),
biocompatible, non-toxic, and sometimes also
biodegradable,
生物相容性,无毒性,有时也可生物降解,
are highly desirable. Herein, we demonstrate a
simple and di-
是非常可取的。在这里,我们展示了一个简单的和二—
rect method for fabricating hollow polymeric
nanospheres
用于制造中空高分子微球的方法
with biocompatible and biodegradable
macromolecules. In
具有生物相容性和生物降解的大分子。在
this approach, hollow polymeric nanospheres
were formed in
这种方法,空心聚合物纳米微球的形成
a completely aqueous system without the aid of
surfactants,
一个完全含水体系没有表面活性剂
interest because of their potential
applications, which range
的兴趣,因为其潜在的应用,其范围
from targeted drug delivery to advanced
functional materi-
靶向给药的先进功能材料—
als.[1,2] Because of their hollow core
structure, such polymeric
ALS。[ 1,2
]由于他们的空心结构,这样的聚合物
spheres can encapsulate large quantities of
guest moleculesÐ
球可以封装客体分子的大量Ð
especially those spheres with functionalities
within the empty
特别是那些球的功能内的空
coreÐand release them at a later stage in a
controlled man-
在受控制的人在后一阶段的核心Ð和释放他们—
ner. Although hollow polymeric spheres with
dimensions in
押尼珥。虽然中空聚合物微球的尺寸
the micrometer and submicrometer regions are
readily con-
的微米和亚微米区域容易控制—
structedÐby layer-by-layer deposition of
polyelectrolytes
结构化Ð层由聚电解质层沉积
onto a template core,[3±6] polymerizing
monomers in lipid vesi-
在模板的核心,[ 6 ] 3±聚合单体脂水—
cles,[7,8] emulsion polymerization,[9,10]
pH-induced micelliza-
式,[
7,8 ]乳液聚合,[ 9 ] pH诱导micelliza—
tion of a grafted copolymer,[11] and by the
assembly of posi-
的接枝共聚物中,[ 11
]通过定位组件—
tively charged polyelectrolytes and negatively
charged
\地电荷的聚电解质和负电荷
nanoparticles[12]Ðthe synthesis of hollow
spheres 100 nm or
[ 12 ]Ð纳米空心球的合成或100
nm
less in size has only recently become the
subject of research
体积小,只是最近才成为研究的主体
activity. Several different routes, such as the
self-assembly of
活动。几种不同的路线,如自组装
block copolymers in a selective solvent,[13,14]
the deposition of
在选择性溶剂中的嵌段共聚物,[ 13,14 ]沉积
polyelectrolytes on a decomplexable or soluble
core,[15,16] and
在decomplexable或可溶芯的聚电解质,[15,16]和
microemulsion (as well as miniemulsion)
polymerization,[17,18]
微乳(以及细乳液聚合,[17,18])
have been developed to form hollow polymeric
nanospheres.
已形成的中空聚合物微球。
Although some of these methods have been quite
successful,
虽然这些方法已经很成功,
these strategies require the core templates to
be removed in
这些策略需要核心模板被删除
order to create a hollow interior, or need
large quantities of
为了创造一个中空的内部,或需要大量的
surfactants to form nanosized micelles.
Furthermore, although
表面活性剂形成纳米胶束。此外,虽然
the majority of the proposed applications of
hollow nano-
所提出的应用纳米空心多数—
spheres or nanocapsules are concentrated in the
biomedical
球或纳米胶囊都集中在生物医学
field, most of the hollow polymeric spheres
described to date
领域,大多数的中空聚合物微球的描述日期
are ill-suited for such purposes. Therefore,
materials (in par-
不适合这样的目的。因此,材料(在平价—
ticular for the surfaces of the hollow
nanospheres) that are
]特殊的纳米空心球的表面),
biocompatible, non-toxic, and sometimes also
biodegradable,
生物相容性,无毒性,有时也可生物降解,
are highly desirable. Herein, we demonstrate a
simple and di-
是非常可取的。在这里,我们展示了一个简单的和二—
rect method for fabricating hollow polymeric
nanospheres
用于制造中空高分子微球的方法
with biocompatible and biodegradable
macromolecules. In
具有生物相容性和生物降解的大分子。在
this approach, hollow polymeric nanospheres
were formed in
这种方法,空心聚合物纳米微球的形成
a completely aqueous system without the aid of
surfactants,
一个完全含水体系没有表面活性剂
展开全部
因其在从靶向给药到先进的功能材料领域的潜在应用,聚合物空心球受到越来越多的关注。由于它们的中空结构,聚合物球能包覆大量的客体分子,尤其是那些具有内空心功能的聚合物球,能在之后的阶段以受控的方式释放它们。虽然尺寸在微米和亚微米区域的空心聚合物球体很容易被一层层沉积在模板的核心聚合电解质构造而成,但是聚合单体在脂质囊泡,乳液聚合,pH诱导胶束化的接枝共聚物,和由带正电荷的聚电解质的组装和带负电的纳米粒子的空心微球的合成100nm或更小的大小,只是在最近才成为研究活动的主题。几个不同的路线,比如嵌段共聚物在选择性溶剂的自组装,聚合电解质在不可复合的或可溶的核心的沉积,微乳液(以及实验)聚合,已经发展形成空心聚合物纳米团簇。尽管其中的一些方法已经相当成功,这些策略需要核心模板被删除以创建一个中空的内部,或者需要大量的表面活性剂形成纳米胶束。此外,虽然大多数的提出应用空心簇或所研发的纳米囊都集中在生物医学领域,大多数的空心聚合物领域描述到目前为止已经不适合这种用途。因此,材料(特别是对于表面的空心纳米团簇)是生物相容的,无毒的,有时也可生物降解性,是非常可取的。在这里,我们展示了一个简单直接的方法制造空心聚合物纳米球的生物相容性和生物降解的大分子。在这种方法中,在一个完全的含水系统形成了空心聚合物纳米球而不借助表面活性剂。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
空心聚合物领域一直吸引着越来越多
兴趣,因为他们的潜在应用,范围
从有针对性的药物输送到高级功能马特里-
als。[1,2]因为他们的空心结构,这种聚合物
球体可以封装moleculesÐ大量的客人
尤其是球体与功能在空
coreÐand释放他们后来在一个受控的人-
押尼珥。虽然空心聚合物在球体的尺寸
千分尺及亚微米的区域很容易完全
structedÐby层沉积的聚合电解质
到一个模板的核心,[3±6]聚合单体在脂质vesi -
cles,[7,8]乳液聚合,(9、10)ph诱导micelliza -
接枝共聚物的名诗,[11]和组装及-
tively带电聚合电解质和带负电
[12]Ðthe合成纳米颗粒的空心球体100海里或
更少的大小只有最近成为研究的主题
活动。几个不同的路线,比如自组装的
嵌段共聚物在选择性溶剂,(13、14)的沉积
聚合电解质在decomplexable或可溶性核心,(15、16)和
微乳液(以及实验)聚合,(17、18)
已经开发形成空心聚合物纳米团簇。
尽管其中的一些方法已经相当成功,
这些策略需要核心模板被删除的
为了创建一个中空的内部,或者需要大量的
表面活性剂形成纳米胶束。此外,虽然
提出了应用程序的大多数的空心纳米-
球体或所研发的纳米囊是集中在生物医学
场,大部分的空心聚合物领域描述到目前为止
不适合这种用途。因此,材料(par -
单独的表面的空心纳米团簇)
生物相容性、无毒、可生物降解,有时也
是非常可取的。在此,我们演示一个简单的和di -
矩形法制造空心聚合物纳米团簇
同的生物相容性和可降解性高分子。在
这种方法,空心聚合物纳米团簇的形成
一个完全水系统的帮助下表面活性剂,
兴趣,因为他们的潜在应用,范围
从有针对性的药物输送到高级功能马特里-
als。[1,2]因为他们的空心结构,这种聚合物
球体可以封装moleculesÐ大量的客人
尤其是球体与功能在空
coreÐand释放他们后来在一个受控的人-
押尼珥。虽然空心聚合物在球体的尺寸
千分尺及亚微米的区域很容易完全
structedÐby层沉积的聚合电解质
到一个模板的核心,[3±6]聚合单体在脂质vesi -
cles,[7,8]乳液聚合,(9、10)ph诱导micelliza -
接枝共聚物的名诗,[11]和组装及-
tively带电聚合电解质和带负电
[12]Ðthe合成纳米颗粒的空心球体100海里或
更少的大小只有最近成为研究的主题
活动。几个不同的路线,比如自组装的
嵌段共聚物在选择性溶剂,(13、14)的沉积
聚合电解质在decomplexable或可溶性核心,(15、16)和
微乳液(以及实验)聚合,(17、18)
已经开发形成空心聚合物纳米团簇。
尽管其中的一些方法已经相当成功,
这些策略需要核心模板被删除的
为了创建一个中空的内部,或者需要大量的
表面活性剂形成纳米胶束。此外,虽然
提出了应用程序的大多数的空心纳米-
球体或所研发的纳米囊是集中在生物医学
场,大部分的空心聚合物领域描述到目前为止
不适合这种用途。因此,材料(par -
单独的表面的空心纳米团簇)
生物相容性、无毒、可生物降解,有时也
是非常可取的。在此,我们演示一个简单的和di -
矩形法制造空心聚合物纳米团簇
同的生物相容性和可降解性高分子。在
这种方法,空心聚合物纳米团簇的形成
一个完全水系统的帮助下表面活性剂,
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |