几何题分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点 求证:BC=2AO
4个回答
展开全部
解:以AG和AE为邻边作平行四边形AGNE,连接AN,得EN=AG、AO=1/2AN.
在正方形ABFG和ACDE中AB=AG;AC=AE;角GAE+角BAC=角GAE+角NEA
所以角BAC=角AEN
易得三角形ANE与三角形CBA全等
得AN=BC=2AO
在正方形ABFG和ACDE中AB=AG;AC=AE;角GAE+角BAC=角GAE+角NEA
所以角BAC=角AEN
易得三角形ANE与三角形CBA全等
得AN=BC=2AO
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图形就参考二楼的。
延长AO到点M,使OM=OA,连接MG、ME
则四边形AEMG是平行四边形。
下面要证明的是三角形AGM与三角形ABC相似。
因为AEMG是平行四边形,所以其对角和为180度,即:
角MGA+GAE=180°。
在以A点为中心构成的四个角中,有两个是正方的一个角,所以有:
角BAC+GAE=180°。
即可得到:
∠MGA=∠BAC
又因为GM=EF=AC;
GA=AB.
所以三角形MGA全等于三角形BAC.
则有:BC=AM=2OA.
延长AO到点M,使OM=OA,连接MG、ME
则四边形AEMG是平行四边形。
下面要证明的是三角形AGM与三角形ABC相似。
因为AEMG是平行四边形,所以其对角和为180度,即:
角MGA+GAE=180°。
在以A点为中心构成的四个角中,有两个是正方的一个角,所以有:
角BAC+GAE=180°。
即可得到:
∠MGA=∠BAC
又因为GM=EF=AC;
GA=AB.
所以三角形MGA全等于三角形BAC.
则有:BC=AM=2OA.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询