[2/(m+n)^3*(1/m+1/n)+1/(m^2+2mn+n^2)*(1/m^2+1/n^2)]/(m-n)/m^3n^3 10
1个回答
展开全部
[2/(m+n)^3*(1/m+1/n)+1/(m^2+2mn+n^2)*(1/m^2+1/n^2)]/(m-n)/m^3n^3
=[ 2/(m+n)^3*(m+n)/mn + 1/(m+n)^2*(m^2+n^2)/m^2n^2 ] / (m-n) / m^3n^3
=[ 2/(m+n)^2*mn/m^2n^2 + 1/(m+n)^2*(m^2+n^2)/m^2n^2 ] / (m-n) / m^3n^3
={ (2mn+m^2+n^2)/[(m+n)^2*m^2n^2] }/ (m-n) /m^3n^3
={ (m+n)^2/[(m+n)^2*m^2n^2] }/ (m-n) /m^3n^3
=1/m^2n^2 / (m-n) /m^3n^3
=1/[(m-n)m^5n^5]
=[ 2/(m+n)^3*(m+n)/mn + 1/(m+n)^2*(m^2+n^2)/m^2n^2 ] / (m-n) / m^3n^3
=[ 2/(m+n)^2*mn/m^2n^2 + 1/(m+n)^2*(m^2+n^2)/m^2n^2 ] / (m-n) / m^3n^3
={ (2mn+m^2+n^2)/[(m+n)^2*m^2n^2] }/ (m-n) /m^3n^3
={ (m+n)^2/[(m+n)^2*m^2n^2] }/ (m-n) /m^3n^3
=1/m^2n^2 / (m-n) /m^3n^3
=1/[(m-n)m^5n^5]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询