已知函数f(x)=(cosx)^2+asinx-2a-2
(1)当a=-2时,求满足f(x)=0的x的值(2)当关于x的方程f(x)=0有实数解时,求a的取值范围(3)若任意的x∈R,都有-5≤f(x)≤-1成立,求实数a的取值...
(1)当a= -2时,求满足f(x)=0的x的值
(2)当关于x的方程f(x)=0有实数解时,求a的取值范围
(3)若任意的x∈R,都有-5≤f(x)≤-1成立,求实数a的取值范围
要详细解答过程!!! 展开
(2)当关于x的方程f(x)=0有实数解时,求a的取值范围
(3)若任意的x∈R,都有-5≤f(x)≤-1成立,求实数a的取值范围
要详细解答过程!!! 展开
1个回答
展开全部
答:
f(x)=cos²x+asinx-2a-2
=1-sin²x+asinx-2a-2
=-sin²x+asinx-2a-1
=-(sinx-a/2)²+a²/4-2a-1
1)a=-2时:
f(x)=-(sinx+1)²+4=0
sinx+1=2或者sinx+1=-2
所以:sinx=1(sinx=-3不符合舍去)
所以:x=2kπ+π/2,k∈Z
2)
f(x)=-sin²x+asinx-2a-1=0有实数解
设t=sinx∈[-1,1],方程化为:t²-at+2a+1=0有解
整理得:
a=(t²+1)/(t-2)=(t-2)+5/(t-2)+4<=-2√5+4
当且仅当t-2=5/(t-2)即t-2=-√5时取得最大值
因为:t-2∈[-3,-1]
所以:
t-2=-3时,a=-3-5/3+4=-2/3
t-2=-1时,a=-1-5+4=-2
所以:-2<=a<=-2√5+4
3)
f(x)=-sin²x+asinx-2a-1∈[-5,-1]恒成立
-5<=-sin²x+asinx-2a-1<=-1恒成立
设t=sinx∈[-1,1]:1<=t²-at+2a+1<=5
所以:0<=t²-(t-2)a<=4
即:
t+2>=a>=t²/(t-2)=(t-2)+4/(t-2)+4
因为:(t-2)+4/(t-2)+4<=-2√4+4=0,t-2=4/(t-2)即t-2=-2时取得最大值0
又因为:1<=t+2<=3
所以:t+2>=1>=a>=0>=(t-2)+4/(t-2)+4
所以:0<=a<=1
f(x)=cos²x+asinx-2a-2
=1-sin²x+asinx-2a-2
=-sin²x+asinx-2a-1
=-(sinx-a/2)²+a²/4-2a-1
1)a=-2时:
f(x)=-(sinx+1)²+4=0
sinx+1=2或者sinx+1=-2
所以:sinx=1(sinx=-3不符合舍去)
所以:x=2kπ+π/2,k∈Z
2)
f(x)=-sin²x+asinx-2a-1=0有实数解
设t=sinx∈[-1,1],方程化为:t²-at+2a+1=0有解
整理得:
a=(t²+1)/(t-2)=(t-2)+5/(t-2)+4<=-2√5+4
当且仅当t-2=5/(t-2)即t-2=-√5时取得最大值
因为:t-2∈[-3,-1]
所以:
t-2=-3时,a=-3-5/3+4=-2/3
t-2=-1时,a=-1-5+4=-2
所以:-2<=a<=-2√5+4
3)
f(x)=-sin²x+asinx-2a-1∈[-5,-1]恒成立
-5<=-sin²x+asinx-2a-1<=-1恒成立
设t=sinx∈[-1,1]:1<=t²-at+2a+1<=5
所以:0<=t²-(t-2)a<=4
即:
t+2>=a>=t²/(t-2)=(t-2)+4/(t-2)+4
因为:(t-2)+4/(t-2)+4<=-2√4+4=0,t-2=4/(t-2)即t-2=-2时取得最大值0
又因为:1<=t+2<=3
所以:t+2>=1>=a>=0>=(t-2)+4/(t-2)+4
所以:0<=a<=1
更多追问追答
追问
第二小题能用二次函数求解吗?
追答
可以,但是非常麻烦,要讨论好多种情况
这种情况用分离变量法是比较简单、不容易出错的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询