已知四边形ABCD中,AB垂直于AD,BC垂直于CD,AB=BC,角ABC=120度
1个回答
展开全部
完整题目是这样吧:已知四边形ABCD中AB垂直于AD,BC垂直于CD,AB=BC,角ABC=120度,角MBN=60度,角MBN绕点B旋转,它的两边分别交直线AD、DC于E、F.
当角MBN绕点B旋转到AE=CF时,如图,证明AE+CF=EF.
延长EA到G,使AG=FC,
∵GA=FC,∠GAB=∠FCB,AB=CB,
∴△GAB≌△FCB,
∴∠GBA=∠FBC,GB=FB,AG=CF,
∵∠FBC+∠FBA=60°,
∴∠GBA+∠FBA=60°,
即:∠GBF=60°
∵∠EBF=30°,
∴∠GBE=30°,
∵GB=FB,∠GBE=∠FBC,BE=BE,
∴△GBE≌△FBE,
∴GE=FE
∵GE=AG+AE,
∴EF=AE+CF;
当角MBN绕点B旋转到AE=CF时,如图,证明AE+CF=EF.
延长EA到G,使AG=FC,
∵GA=FC,∠GAB=∠FCB,AB=CB,
∴△GAB≌△FCB,
∴∠GBA=∠FBC,GB=FB,AG=CF,
∵∠FBC+∠FBA=60°,
∴∠GBA+∠FBA=60°,
即:∠GBF=60°
∵∠EBF=30°,
∴∠GBE=30°,
∵GB=FB,∠GBE=∠FBC,BE=BE,
∴△GBE≌△FBE,
∴GE=FE
∵GE=AG+AE,
∴EF=AE+CF;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询