利用取对数的方法求下列幂指函数的极限lim<x→0>(e^x+x)^(1/x) lim [(a^x+b^x+c^x)/3]^(1/x)

帮帮我吧~高数真的太难了~~~有两题哦~忘记隔开了~... 帮帮我吧~高数真的太难了~~~
有两题哦~忘记隔开了~
展开
 我来答
匿名用户
2014-01-27
展开全部

高数学和巧戚的时候就难,其实考就不宽厅怎么难,平时肯看唤陵下书就一定及格。

heanmeng
推荐于2018-03-15 · TA获得超过6749个赞
知道大有可为答主
回答量:3651
采纳率:94%
帮助的人:1494万
展开全部
解:lim(x->0)[(e^x+x)^(1/x)]
=lim(x->0){e^[ln(e^x+x)/x]} (应用对数性质取对数)
=e^{lim(x->0)[ln(e^x+x)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(e^x+1)/(e^x+x)]} (0/0型老盯极限,应用罗比达法则)
=e^[(1+1)/(1+0)]
=e^2
lim(x->0){[(a^x+b^x+c^x)/3]^(1/x)}
=lim(x->0){e^[(ln(a^x+b^x+c^x)-ln3)/x]} (应用对数性质取对数)
=e^{lim(x->0)[(ln(a^x+b^x+c^x)-ln3)/x]} (应用初等函数的连续性)
=e^{lim(x->0)[(a^xln│a│+b^xln│b│亏含烂销漏+c^xln│c│)/(a^x+b^x+c^x)]} (0/0型极限,应用罗比达法则)
=e^[(ln│a│+ln│b│+ln│c│)/(1+1+1)]}
=e^[ln│abc│/3]
=(abc)^(1/3)。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式