已知,如图:在△ABC中,AB=AC,E是AB上的点,F是AC延长线上的点,BE=CF,EF交BC于点D,求证:DE=DF。 20
2个回答
2014-05-03
展开全部
∵AB=AC
∴∠B=∠ACB 因为这个三角形的两条腰相等,所以两个底角相等
然后证明△DEB≌△DCF
{∠B=∠ACB
{∠EDB=∠CDF(对顶角相等)
{EB=CF
所以△DEB≌△DCF
所以DE=DF
看完了采纳哦~~祝学习进步!
∴∠B=∠ACB 因为这个三角形的两条腰相等,所以两个底角相等
然后证明△DEB≌△DCF
{∠B=∠ACB
{∠EDB=∠CDF(对顶角相等)
{EB=CF
所以△DEB≌△DCF
所以DE=DF
看完了采纳哦~~祝学习进步!
追问
你题目看错了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询