若正实数a、b满足ab=a+b+3,则a²+b²的最小值为?

 我来答
百度网友8d5546a
2014-05-17 · TA获得超过5.6万个赞
知道大有可为答主
回答量:1.5万
采纳率:75%
帮助的人:1780万
展开全部
由a+b+3=ab可得,
(a+b)^2 = (ab-3)^2
于是a^2+b^2+2ab= a^2*b^2-6ab+9
又由于a^2+b^2 >= 2ab
所以a^2*b^2-8ab+9 >= 2ab
所以(ab-9)(ab-1) >= 0
所以ab >= 9 或是 ab <= 1
但是ab= a+b+3 > 3(a,b均为正实数)
所以ab >= 9
所以a^2 + b^2 >= 2ab >= 18
而当a=b=3时,可以满足上述条件,正好可以得到最小值18
因此,a^2 + b^2的最小值为18
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式