数学专业概率论与数理统计 考研都考什么
2个回答
展开全部
1、不同的学校考的概率理论与数理统计的具体内容是不同的,特别是对于985的学校,都是自主命题。主要说一下一般学校的《概率理论与数理统计》目录与考试类型
2、目录与主要内容
第一章:随机事件和概率
第二章:随机变量及其分布
第三章:多维随机变量及其分布
第四章:随机变量的数字特征
第五章:大数定律和中心极限定理
第六章:数理统计的基本概念
第七章:参数估计
3、常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;
(2)利用事件的关系进行概率计算;
(3)利用概率的性质证明概率等式或计算概率;
(4)有关古典概型、几何概型的概率计算;
(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(6)有关事件独立性的证明和计算概率;
(7)有关独重复试验及伯努利概率型的计算;
(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;
(9)由给定的试验求随机变量的分布;
(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等计算概率;
(11)求随机变量函数的分布;
(12)确定二维随机变量的分布;
(13)利用二维均匀分布和正态分布计算概率;
(14)求二维随机变量的边缘分布、条件分布;
(15)判断随机变量的独立性和计算概率;
(16)求两个独立随机变量函数的分布;
(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;
(18)求随机变量函数的数学期望;
(19)求两个随机变量的协方差、相关系数并判断相关性;
(20)求随机变量的矩和协方差矩阵;
(21)利用切比雪夫不等式推证概率不等式;
(22)利用中心极限定理进行概率的近似计算;
(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;
(24)推证某些统计量(特别是正态总体统计量)的分布;
(25)计算统计量的概率;
(26)求总体分布中未知参数的矩估计量和极大似然估计量;
(27)判断估计量的无偏性、有效性和一致性;
(28)求单个或两个正态总体参数的置信区间;
(29)对单个或两个正态总体参数假设进行显著性检验;
(30)利用χ2检验法对总体分布假设进行检验。
2、目录与主要内容
第一章:随机事件和概率
第二章:随机变量及其分布
第三章:多维随机变量及其分布
第四章:随机变量的数字特征
第五章:大数定律和中心极限定理
第六章:数理统计的基本概念
第七章:参数估计
3、常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;
(2)利用事件的关系进行概率计算;
(3)利用概率的性质证明概率等式或计算概率;
(4)有关古典概型、几何概型的概率计算;
(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(6)有关事件独立性的证明和计算概率;
(7)有关独重复试验及伯努利概率型的计算;
(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;
(9)由给定的试验求随机变量的分布;
(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等计算概率;
(11)求随机变量函数的分布;
(12)确定二维随机变量的分布;
(13)利用二维均匀分布和正态分布计算概率;
(14)求二维随机变量的边缘分布、条件分布;
(15)判断随机变量的独立性和计算概率;
(16)求两个独立随机变量函数的分布;
(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;
(18)求随机变量函数的数学期望;
(19)求两个随机变量的协方差、相关系数并判断相关性;
(20)求随机变量的矩和协方差矩阵;
(21)利用切比雪夫不等式推证概率不等式;
(22)利用中心极限定理进行概率的近似计算;
(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;
(24)推证某些统计量(特别是正态总体统计量)的分布;
(25)计算统计量的概率;
(26)求总体分布中未知参数的矩估计量和极大似然估计量;
(27)判断估计量的无偏性、有效性和一致性;
(28)求单个或两个正态总体参数的置信区间;
(29)对单个或两个正态总体参数假设进行显著性检验;
(30)利用χ2检验法对总体分布假设进行检验。
展开全部
概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
二、随机变量及其分布
考试内容
随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率。
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布及其应用。
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布。
三、多维随机变量及其分布
考试内容
多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
1.理解多维随机变量的分布函数的概念和性质。
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布。
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义。
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。
2.会求随机变量函数的数学期望.
3. 了解切比雪夫不等式。
五、大数定律和中心极限定理
考试内容
切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。
2.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)、列维-林德伯格定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解产生 变量, 变量, 变量的典型模式;理解标准正态分布、 分布、 分布、 分布的上侧 分位数,会查相应的数值表。
3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布。
4.了解经验分布函数的概念和性质。
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法
考试要求
1.了解参数的点估计、估计量与估计值的概念。
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
二、随机变量及其分布
考试内容
随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率。
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布及其应用。
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布。
三、多维随机变量及其分布
考试内容
多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
1.理解多维随机变量的分布函数的概念和性质。
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布。
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义。
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。
2.会求随机变量函数的数学期望.
3. 了解切比雪夫不等式。
五、大数定律和中心极限定理
考试内容
切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。
2.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)、列维-林德伯格定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解产生 变量, 变量, 变量的典型模式;理解标准正态分布、 分布、 分布、 分布的上侧 分位数,会查相应的数值表。
3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布。
4.了解经验分布函数的概念和性质。
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法
考试要求
1.了解参数的点估计、估计量与估计值的概念。
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
追问
这些内容都需要看些什么书呢?
追答
课本:同济大学第六版《高等数学》+同济大学第四版《线性代数》+浙江大学第
三版《概率论与数理统计》
辅导书看个人了
祝考研顺利
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询