![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
在三角形ABC中,角A,B,C的对边分别是a,b,c,且sin^2A+sin^2B=sin^2C+
在三角形ABC中,角A,B,C的对边分别是a,b,c,且sin^2A+sin^2B=sin^2C+sinAsinB求角c的大小...
在三角形ABC中,角A,B,C的对边分别是a,b,c,且sin^2A+sin^2B=sin^2C+sinAsinB求角c的大小
展开
展开全部
答:
三角形ABC中,sin^2A+sin^2B=sin^2C+sinAsinB
根据正弦定理有:
a/sinA=b/sinB=c/sinC=2R
联立两式有:
a^2+b^2=c^2+ab
a^2+b^2-c^2=ab
根据余弦定理有:
cosC=(a^2+b^2-c^2)/(2ab)
=ab/(2ab)
=1/2
C=60°
三角形ABC中,sin^2A+sin^2B=sin^2C+sinAsinB
根据正弦定理有:
a/sinA=b/sinB=c/sinC=2R
联立两式有:
a^2+b^2=c^2+ab
a^2+b^2-c^2=ab
根据余弦定理有:
cosC=(a^2+b^2-c^2)/(2ab)
=ab/(2ab)
=1/2
C=60°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询