如图,在三角形ABC中,∠ACB=90º,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE

=4,求四边形ACEB的周长。... =4,求四边形ACEB的周长。 展开
 我来答
岭下人民
2014-03-06 · TA获得超过22.8万个赞
知道小有建树答主
回答量:3.5万
采纳率:97%
帮助的人:2167万
展开全部
解:因为角ACB=90度
DE垂直BC
所以角BDC=90度
所以角ACB=角BDC=90度
所以AC平行DE
因为CE平行AD
所以四边形ACED是平行四边形
所以AC=DE
因为AC=2
所以CE=2
因为D是BC的中点,且DE垂直BC
所以DE是BC的中垂线
所以CE=BE
CD=DB=1/2BC
因为CE=4
所以BE=4
因为角CDE=90度
CE=4 DE=2
所以由勾股定理得:CD=1/2BC=2倍根号3
所以BC=4倍根号3
因为角ACB=90度 AC=2 BC=4倍根号3
所以由勾股定理得:AB=2倍根号13
所以四边形ACEB的周长=AC+CE+BE+AB=2+4+4+2倍根号13=10+2倍根号13
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式