洛必达法则无穷比无穷型,分子极限是负无穷,分母极限是正无穷也可以用么?
当X趋向正无穷,分子是ln(π/2-arctanX),分母是lnX,解析运用了洛必达法则,这样也可以么?还有假如不能用洛必达法则该怎么求极限?...
当X趋向正无穷,分子是ln(π/2-arctanX),分母是lnX,解析运用了洛必达法则,这样也可以么?还有假如不能用洛必达法则该怎么求极限?
展开
展开全部
当然可以,你可以看成负的正无穷比正无穷
更多追问追答
追问
能麻烦你看一下补充的情况么?能否帮个忙把过程写出来呢?因为解析的过程他是没有改变分母的符号,也没有加负号,直接就开始求导了,然后就直接出结果了
追答
lim(x→+∞) [ln(π/2-arctanx)]/lnx ,洛必达法则
=lim(x→+∞) [1/(π/2-arctanx)×(-1)/(1+x^2)]/(1/x)
=-lim(x→+∞) 1/(π/2-arctanx)×x/(1+x^2)
=-lim(x→+∞) (1/x)1/(π/2-arctanx)×x^2/(1+x^2)
=-lim(x→+∞) (1/x)/(π/2-arctanx) ,洛必达法则
=-lim(x→+∞) (-1/x^2)/(-1/(1+x^2))
=-lim(x→+∞) (1+x^2)/(x^2)
=-1 所以lim(x→+∞) (π/2-arctanx)^(1/lnx)=lim(x→+∞) e^{[ln(π/2-arctanx)]/lnx}=e^(-1)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询