初中几何证明题(全等)
已知:如图,以⊿ABC的两边AB、AC分别为边作正方形ABEF、ACGH,AD⊥BC,DA的延长线交FH于点M。求证:MF=MH。...
已知:如图,以⊿ABC的两边AB、AC分别为边作正方形ABEF、ACGH,AD⊥BC,DA的延长线交FH于点M。
求证:MF=MH。 展开
求证:MF=MH。 展开
展开全部
证明:分别过点F,H作AD的垂线,垂足为K,N
因为 ABEF是正方形,角BAF=90度 AF=AB
所以 角FAK+角BAD=90度
因为 FK垂直于AD 角FKA=90度
所以 角FAK+角AFK=90度
所以 角BAD=角AFK.
所以三角形ABD全等于三角形FAK
所以 FK=AD
同理可证 三角形ACD全等于三角形HAN
所以 HN=AD
所以 FK=HN
在直角三角形FMK和直角三角形HMN中
因为 角FMK=角HMN(对顶角) FK=HN
所以 三角形FMK全等于三角形HMN
所以 MF=MH.
因为 ABEF是正方形,角BAF=90度 AF=AB
所以 角FAK+角BAD=90度
因为 FK垂直于AD 角FKA=90度
所以 角FAK+角AFK=90度
所以 角BAD=角AFK.
所以三角形ABD全等于三角形FAK
所以 FK=AD
同理可证 三角形ACD全等于三角形HAN
所以 HN=AD
所以 FK=HN
在直角三角形FMK和直角三角形HMN中
因为 角FMK=角HMN(对顶角) FK=HN
所以 三角形FMK全等于三角形HMN
所以 MF=MH.
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询