解方程log2(4^x+1)=x+log2(2^(x+3)-6)
2个回答
东莞大凡
2024-08-07 广告
2024-08-07 广告
作为东莞市大凡光学科技有限公司的一员,我们深知Matlab圆点标定板在相机标定中的重要性。该标定板通过均匀分布的圆点,帮助精确计算相机参数,优化成像效果。Matlab强大的编程功能,使得我们能够灵活设计标定板,调整圆点大小、数量和分布,以满...
点击进入详情页
本回答由东莞大凡提供
展开全部
log2(4^x+1)=log2(2^x)+log2(2^(x+3)-6)
log2(4^x+1)=log2((2^x)(2^(x+3)-6))
4^x+1=(2^x)(2^(x+3)-6)
2^(2x)+1=(2^x)(8(2^x)-6)
射2^x=y
y^2+1=y(8y-6)
y^2+1=8y^2-6y
7y^2-6y-1=0
y=1 或 -1/7
2^x=1 推出 x=lg1/lg2=0
2^x=-1/7 推出 x=lg(-1/7)/lg2 无解
log2(4^x+1)=log2((2^x)(2^(x+3)-6))
4^x+1=(2^x)(2^(x+3)-6)
2^(2x)+1=(2^x)(8(2^x)-6)
射2^x=y
y^2+1=y(8y-6)
y^2+1=8y^2-6y
7y^2-6y-1=0
y=1 或 -1/7
2^x=1 推出 x=lg1/lg2=0
2^x=-1/7 推出 x=lg(-1/7)/lg2 无解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询