(asinA+bsinA)/(acosA-bsinA)=tanB,B-A=π/6,则b/a=

再來也
2011-03-20 · TA获得超过629个赞
知道小有建树答主
回答量:286
采纳率:33%
帮助的人:115万
展开全部
定义x为tanx=b/a

sinx/cosx=b/a ---(1)
(sinx)^2+(cosx)^2=1 ---(2)

可得sinx=b/√(a^2+b^2), cosx=a/√(a^2+b^2)

(asinA+bsinA)/(acosA-bsinA)=tanB=tan(A+π/6)
左边分子分母除√(a^2+b^2), 可得
sin(A+x)/cos(A+x)=tan(A+x)=tan(A+π/6)
故有
x=π/6±kπ ,k=0,1,2,...

b/a=tanx=tan(π/6±kπ)=tan(π/6)=1/√3
追问
这一步转化有问题的 ,我想应该是这题题目出错了吧
追答
噢。是的。

tanB
=tan(π/6+A)
=(cosπ/6sinA+sinπ/6cosA)/(cosπ/6cosA-sinπ/6sinA)
=(sinA (√3/2)+cosA (1/2) )/(cosA (√3/2) -(1/2)sinA)
=(sinA (√3)+cosA )/(cosA (√3) -sinA)

(a+b)sinA/(acosA-bsinA)=tanB=(sinA (√3)+cosA )/(cosA (√3) -sinA)
=>
(1-√3)b(sin(A))^2 - (1+√3)bcos(A)sin(A) +a =0
所以
b/a= 1/((√3-1)*(sin(A))^2+(1+√3)*cos(A)*sin(A))
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式