高中数学:数列与不等式
求证:n<(k=1,n)∑√(1+(1/k²)+(1/(k+1)²))<n+1.(n∈N+)...
求证:n<(k=1,n)∑√(1+(1/k²)+(1/(k+1)²))<n+1. (n∈N+)
展开
展开全部
1+ 1/k²+ 1/(k+1)²
=[k²(k+1)²+(k+1)²+k²]/[k²(k+1)²]
=[k²(k+1)²+2k²+2k+1]/[k²(k+1)²]
=[k²(k+1)²+2k(k+1)+1]/[k²(k+1)²]
=[k(k+1)+1]²/[k(k+1)]²
√[1+ 1/k²+ 1/(k+1)²]
=√[k(k+1)+1]²/[k(k+1)]²
=[k(k+1)+1]/[k(k+1)]
=1+ 1/[k(k+1)]
=1+ 1/k -1/(k+1) /关键就是化简,剩下的就非常简单了。
n
∑ √[1+ 1/k²+ 1/(k+1)²]
k=1
=1+1-1/2+1+1/2-1/3+...+1+1/n -1/(n+1)
=n+[1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=n+1 -1/(n+1)
1/(n+1)>0 n+1- 1/(n+1)<n+1
n
∑ √[1+ 1/k²+ 1/(k+1)²] <n+1
k=1
n≥1 1/(n+1)≤1/2
n+1 -1/(n+1)≥n+1/2>n
n
∑ √[1+ 1/k²+ 1/(k+1)²]>n
k=1
综上,得
n
n< ∑ √[1+ 1/k²+ 1/(k+1)²] <n+1
提示:本题的关键是化简去根号,后面就非常简单了。
=[k²(k+1)²+(k+1)²+k²]/[k²(k+1)²]
=[k²(k+1)²+2k²+2k+1]/[k²(k+1)²]
=[k²(k+1)²+2k(k+1)+1]/[k²(k+1)²]
=[k(k+1)+1]²/[k(k+1)]²
√[1+ 1/k²+ 1/(k+1)²]
=√[k(k+1)+1]²/[k(k+1)]²
=[k(k+1)+1]/[k(k+1)]
=1+ 1/[k(k+1)]
=1+ 1/k -1/(k+1) /关键就是化简,剩下的就非常简单了。
n
∑ √[1+ 1/k²+ 1/(k+1)²]
k=1
=1+1-1/2+1+1/2-1/3+...+1+1/n -1/(n+1)
=n+[1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=n+1 -1/(n+1)
1/(n+1)>0 n+1- 1/(n+1)<n+1
n
∑ √[1+ 1/k²+ 1/(k+1)²] <n+1
k=1
n≥1 1/(n+1)≤1/2
n+1 -1/(n+1)≥n+1/2>n
n
∑ √[1+ 1/k²+ 1/(k+1)²]>n
k=1
综上,得
n
n< ∑ √[1+ 1/k²+ 1/(k+1)²] <n+1
提示:本题的关键是化简去根号,后面就非常简单了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询