求高手来帮忙! 已知sin(α+β)=1,求tan(2α+β)=0
1个回答
展开全部
题目应该是:“sin(α+β)=1,求证:tan(2α+β)+tanβ=0 ”吧
证明:sin(a+b)=1
→cos(a+b)=√[1-sin^2(a+b)]=0
→sin(2a+2b)=2*sin(a+b)*cos(a+b)=0
→tan(2a+2b)=sin(2a+2b)/cos(2a+2b)=0
tan(2a+b)+tanb
=tan(2a+2b-b)+tanb
=[tan(2a+2b)-tanb]/[1+tan(2a+2b)tanb]+tanb
=[0-tanb]/[1+0*tanb]+tanb
=-tanb+tanb
=0
证明:sin(a+b)=1
→cos(a+b)=√[1-sin^2(a+b)]=0
→sin(2a+2b)=2*sin(a+b)*cos(a+b)=0
→tan(2a+2b)=sin(2a+2b)/cos(2a+2b)=0
tan(2a+b)+tanb
=tan(2a+2b-b)+tanb
=[tan(2a+2b)-tanb]/[1+tan(2a+2b)tanb]+tanb
=[0-tanb]/[1+0*tanb]+tanb
=-tanb+tanb
=0
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询