在三角形ABC中,AB=2AC,角BAC=60度,P为三角形内一点,PA=根号3,PB=5,PC=2。求三角形的面积
7个回答
展开全部
【解】AB=2AC,角BAC=60度,
设AC=x,则AB=2x,根据余弦定理可得:
BC^2=x^2+4x^2-2•x•2x•cos60°,BC=√3x.
所以AB^2=AC^2+BC^2,∠ACB=90°.
延长AC到点D,使得CD=AC,连结BD.
则△BAD是等边三角形。
注意到∠BAC=60°,将△BAP绕点B顺时针旋转60°,到达△DAE的位置。
则AE=AP=√3,∠PAE=60°,△PAE是等边三角形。
PE=√3.
△PAD中,PC是AD边的中线,设PD=y,
利用如下结论:平行四边形两条对角线长的平方和等于它的四条边的平方和。
则有4^2+(2x)^2=(√3)^2+y^2+(√3)^2+y^2,
所以y^2=2x^2-1.
在△PED中,PE=√3,ED=PB=5,PD=y,根据余弦定理得:
Cos∠PED=(3+25- y^2)/(10√3)=(28- y^2) /(10√3)
=(29-2x^2) /(10√3).
所以sin∠PED=√[1- Cos²∠PED]= √[300-(29-2x^2) ²]/(10√3).
在△AED中,AE=√3,ED=5,AD=2X,
∠AED=∠PED+∠PEA=∠PED+60°,
cos∠AED=cos(∠PED+60°)=cos∠PED cos60°-sin∠PED sin60°
=(29-2x^2) /(20√3)- √[300-(29-2x^2) ²]/20.
根据余弦定理得:AD²= AE²+ ED²-2•AE•ED•cos∠AED,
即4x²=3+25-10√3•{(29-2x^2) /(20√3)- √[300-(29-2x^2) ²]/20},
28-4x²=(29-2x^2) /2-√3•√[300-(29-2x^2) ²]/2,
√3•√[300-(29-2x^2) ²]/2=(6 x²-27)/2,
300-(29-2x^2) ²=3(2 x^2-9) ²,
16x^4-224x^2+784=0,
x^4-14 x^2+49=0,
x^2=7.
∴直角三角形BCA的面积=√3 x²/2=7√3/2.
设AC=x,则AB=2x,根据余弦定理可得:
BC^2=x^2+4x^2-2•x•2x•cos60°,BC=√3x.
所以AB^2=AC^2+BC^2,∠ACB=90°.
延长AC到点D,使得CD=AC,连结BD.
则△BAD是等边三角形。
注意到∠BAC=60°,将△BAP绕点B顺时针旋转60°,到达△DAE的位置。
则AE=AP=√3,∠PAE=60°,△PAE是等边三角形。
PE=√3.
△PAD中,PC是AD边的中线,设PD=y,
利用如下结论:平行四边形两条对角线长的平方和等于它的四条边的平方和。
则有4^2+(2x)^2=(√3)^2+y^2+(√3)^2+y^2,
所以y^2=2x^2-1.
在△PED中,PE=√3,ED=PB=5,PD=y,根据余弦定理得:
Cos∠PED=(3+25- y^2)/(10√3)=(28- y^2) /(10√3)
=(29-2x^2) /(10√3).
所以sin∠PED=√[1- Cos²∠PED]= √[300-(29-2x^2) ²]/(10√3).
在△AED中,AE=√3,ED=5,AD=2X,
∠AED=∠PED+∠PEA=∠PED+60°,
cos∠AED=cos(∠PED+60°)=cos∠PED cos60°-sin∠PED sin60°
=(29-2x^2) /(20√3)- √[300-(29-2x^2) ²]/20.
根据余弦定理得:AD²= AE²+ ED²-2•AE•ED•cos∠AED,
即4x²=3+25-10√3•{(29-2x^2) /(20√3)- √[300-(29-2x^2) ²]/20},
28-4x²=(29-2x^2) /2-√3•√[300-(29-2x^2) ²]/2,
√3•√[300-(29-2x^2) ²]/2=(6 x²-27)/2,
300-(29-2x^2) ²=3(2 x^2-9) ²,
16x^4-224x^2+784=0,
x^4-14 x^2+49=0,
x^2=7.
∴直角三角形BCA的面积=√3 x²/2=7√3/2.
展开全部
我今天早上也做了 不过答案有点离奇!2根号11+根号2+根号3+……的除以2 肯定错了。。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
碰到这题很多次了,下面是我做的,计算过程很简单,请参考:
http://zhidao.baidu.com/question/241219726.html
http://zhidao.baidu.com/question/241219726.html
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我只能推出三角形BAC是直角三角形,且BC⊥AC,可能得利用一些特殊方法,我实在想不出,想出来的话再告诉你,这些东西我都还是高中学的,不好意思啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-03-20
展开全部
我妹妹问我,我还是做不出来,出总的竞赛也如此,情何以堪
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询