数列an的前N项和为SN,且an+sn-1=0 (n∈N+)
1个回答
展开全部
解:
a1+S1-1=2a1-1=0
a1=1/2
an+Sn-1=0
Sn=1-an
Sn-1=1-a(n-1)
an=Sn-Sn-1=-an+a(n-1)
2an=a(n-1)
an/a(n-1)=1/2,为定值。
{an}是以1/2为首项,1/2为公比的等比数列。
an=(1/2)(1/2)^(n-1)=1/2^n
数列通项公式为an=1/2^n
bn=nan=n/2^n
Tn=b1+b2+...+bn
=1/2+2/2^2+3/2^3+...+n/2^n
Tn/2=1/2^2+2/2^3+...+(n-1)/2^n+n/2^(n+1)
Tn-Tn/2=Tn/2=1/2+1/2^2+1/2^3+...+1/2^n+n/2^(n+1)
=(1/2)[1-1/2^n]/(1-1/2)-2n/2^n
=1-1/2^n-2n/2^n
=1-(2n+1)/2^n
a1+S1-1=2a1-1=0
a1=1/2
an+Sn-1=0
Sn=1-an
Sn-1=1-a(n-1)
an=Sn-Sn-1=-an+a(n-1)
2an=a(n-1)
an/a(n-1)=1/2,为定值。
{an}是以1/2为首项,1/2为公比的等比数列。
an=(1/2)(1/2)^(n-1)=1/2^n
数列通项公式为an=1/2^n
bn=nan=n/2^n
Tn=b1+b2+...+bn
=1/2+2/2^2+3/2^3+...+n/2^n
Tn/2=1/2^2+2/2^3+...+(n-1)/2^n+n/2^(n+1)
Tn-Tn/2=Tn/2=1/2+1/2^2+1/2^3+...+1/2^n+n/2^(n+1)
=(1/2)[1-1/2^n]/(1-1/2)-2n/2^n
=1-1/2^n-2n/2^n
=1-(2n+1)/2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询