设数列{an}的前n项和为Sn,a1=1,且3a(n+1)=Sn,(1)求a2,a3,a4及an (2)求a2+a4+···+a2n

逗逗的筱柒dUb04
2011-03-21 · TA获得超过302个赞
知道答主
回答量:19
采纳率:0%
帮助的人:0
展开全部
1、通过3a(n+1)=Sn,
n=1时,得到3*a2=a1,即a2=1/3;( * 表示乘号)
n≥2时,Sn=3*a(n+1),S(n-1)=3*an,
两式相减得到an=3*a(n+1)-3*an,即a(n+1)=(4/3)*an,
即a3=(4/3)*a2=4/9,a4=(4/3)*a3=16/27,
an=(4/3)*a(n-1)=(4/3)^2*a(n-2)=...=(4/3)^(n-2)*a2=(4/3)^(n-2)*(1/3)
=4^(n-2)/3^(n-1),( ^ 表示N次方)
(实际上这是一个从第三项开始公比为4/3的等比数列)
2、记Bn=a2+a4+···+a2n,
根据Sn=3*a(n+1),an=(4/3)*a(n-1),得到Sn=3*a(n+1)=3*(4/3)*a(n)=4*an,
S(2n+1)=a1+a2+a3+a4+a5+...+a(2n-1)+a2n+a(2n+1)
=1+a2+4/3*a2+a4+4/3*a4+...+a2n+4/3*a2n
=1+(7/3)*(a2+a4+...+a2n)=1+(7/3)*Bn
=4*a(2n+1)=4*4^(2n-1)/3^2n-=4^2n/3^2n
Bn=(4^2n/3^2n-1)*3/7
=4^2n/[7*3^(2n-1)]-3/7
初来咋到101
2011-03-21
知道答主
回答量:18
采纳率:0%
帮助的人:8.6万
展开全部
S(n+1)=Sn+a(n+1)=4a(n+1)=3a(n+2),即an/a(n-1)=4/3,an=(4/3)^(n-1)
(1):a2=4/3,a3=16/9,a4=64/27
(2)令bn=a(2n)=(4/3)^(2n-1)=(3/4)*(16/9)^n,
Bn=(12/7)*((16/9)^n-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式