设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,

设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=... 设A使MN矩阵,秩A=n-4,a1,a2,a3,a4为齐次线性方程组AX=0的四个线性无关的解向量,证明a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系 展开
 我来答
lry31383
高粉答主

2011-03-20 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
第1步:
因为a1,a2,a3,a4为齐次线性方程组AX=0的解,
所以它们的线性组合 a1,a1+a2,a1+a2+a3,a1+a2+a3+a4 也是AX=0的解
第2步:
需证 a1,a1+a2,a1+a2+a3,a1+a2+a3+a4 线性无关.
设 k1a1 + k2(a1+a2) + k3(a1+a2+a3) + k4(a1+a2+a3+a4) = 0
则 (k1+k2+k3+k4)a1 + (k2+k3+k4)a2 + (k3+k4)a3 + k4a4 = 0
由 a1,a2,a3,a4 线性无关, 所以有
k1+k2+k3+k4 = 0
k2+k3+k4 = 0
k3+k4 = 0
k4 = 0
解得 k1=k2=k3=k4=0
所以 a1,a1+a2,a1+a2+a3,a1+a2+a3+a4 线性无关
第3步:
因为 r(A) = n-4,
所以AX=0的基础解系所含向量的个数为 n-r(A) = 4

综上有 a1,a1+a2,a1+a2+a2,a1+a2+a3+a4是AX=0的一个基础解系#

满意请采纳 ^-^
耿直又低调灬福星373
2011-03-21 · TA获得超过1059个赞
知道小有建树答主
回答量:886
采纳率:0%
帮助的人:1057万
展开全部
的,不符合基础解系的定义,用排除法都应该选D了
其次D确实是对的,因为α,β,γ构成了解空间的一组基,所以α,α+β,α+β+γ同样也是一组基
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式