在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆(x-4)2+(y-3)2=4上一点与...
在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则圆(x-4)2+(y-3)2=4上一点与直线x+y=0上一点的“折线距离”的最小值是______.
展开
1个回答
展开全部
解:设直线上的任意一点A,
圆上任意一点C;
过C,A分别作x、y轴的垂线交于点B.
由题意可知:d=AB+BC;
∵AB+BC≥AC,
转化为求AC的最小值.
AC的最小值等于圆心到直线的距离减去半径:即ACmin=
-2=
-2;
此时ABC三点围成以AC为斜边的等腰直角三角形,故AB=BC=
(
-2)=
-
.
∴(AB+BC)min=2AC=7-2
.
即d的最小值为:7-2
圆上任意一点C;
过C,A分别作x、y轴的垂线交于点B.
由题意可知:d=AB+BC;
∵AB+BC≥AC,
转化为求AC的最小值.
AC的最小值等于圆心到直线的距离减去半径:即ACmin=
|4+3| | ||
|
7
| ||
2 |
此时ABC三点围成以AC为斜边的等腰直角三角形,故AB=BC=
| ||
2 |
7
| ||
2 |
7 |
2 |
2 |
∴(AB+BC)min=2AC=7-2
2 |
即d的最小值为:7-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|