如图(1)正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=62.将正方形AEFG绕点A逆时针旋转α(0°≤
如图(1)正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=62.将正方形AEFG绕点A逆时针旋转α(0°≤α≤45°)(1)如图(2)正方形AEFG旋...
如图(1)正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE=62.将正方形AEFG绕点A逆时针旋转α(0°≤α≤45°)(1)如图(2)正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点Q,当正方形AEFG由图(1)绕点A逆时针旋转45°,请直接写出旋转过程中点Q运动的路线长;(4)在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DQ的长;若不存在,请说明理由.(点Q即(3)中的点)
展开
1个回答
展开全部
(1)证明:在正方形ABCD和正方形AEFG中,
AB=AD,AE=AG,∠BAD=∠EAG=90°,
∵∠BAE+∠EAD=∠BAD=90°,
∠DAG+∠EAD=∠BAD=90°,
∴∠BAE=∠DAG,
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴BE=DG;
(2)如图,过点A作AH⊥BE交BE的延长线于H,
∵∠BEA=120°,
∴∠AEH=180°-120°=60°,
∵AE=6
,
∴AH=AE?sin60°=6
×
=3
,
EH=AE?cos60°=6
×
=3
AB=AD,AE=AG,∠BAD=∠EAG=90°,
∵∠BAE+∠EAD=∠BAD=90°,
∠DAG+∠EAD=∠BAD=90°,
∴∠BAE=∠DAG,
在△ABE和△ADG中,
|
∴△ABE≌△ADG(SAS),
∴BE=DG;
(2)如图,过点A作AH⊥BE交BE的延长线于H,
∵∠BEA=120°,
∴∠AEH=180°-120°=60°,
∵AE=6
2 |
∴AH=AE?sin60°=6
2 |
| ||
2 |
6 |
EH=AE?cos60°=6
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|